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Abstract — A linear code can be thought of as a
vector matroid represented by the columns of code’s
generator matrix; a well-known result in this context
is Greene’s theorem on a connection of the weight
polynomial of the code and the Tutte polynomial of
the matroid. We examine this connection from the
coding-theoretic viewpoint, building upon the rank
polynomial of the code. This enables us

e to relate the weight polynomial of codes and the
reliability polynomial of linear matroids and to
prove new bounds on the latter;

e to prove that the partition polynomial of the
Potts model equals the weight polynomial of the
cocycle code of the underlying graph, and

e to give a simple proof of Greene’s theorem and
its generalization.

I. INTRODUCTION

Let C be a linear code of length n and let E = {1,2,...,n} be
its coordinate set. The weight polynomial of C is defined as
Alz,y) =XT, Aiz""'y*, where A; is the number of vectors
of Hamming weight 7 in C. Let G be a generator matrix of C.
By G(F) we denote the submatrix of G formed by the columns
with numbers in F C E. The rank polynomial of C is defined
as U(z,y) =Y veo Ek Uy z*y", where

v=0
U, ={F C E | |F| = u,tk(G(F)) = v}|

The polynomials A(z,y) and U(z,y) are connected by the
following relation, equivalent to Greene’s theorem [3].

Theorem 1:

Atw,) = vlom (252, 2) 8

The code C can be also thought of as a (vector) matroid M
represented by the column space of Gj so given M, we call C
the code of M, denoted C(M).

II. RELIABILITY POLYNOMIAL

Let M be a linear matroid of rank k on the ground set E
of size n defined by its representation over F, and let U} be
its number of independent sets of size i. The (all-terminal)
reliability polynomial of M, by definition, is

k
R(M;z,y):= Y Uiz""'y". (2)
=0

The terminology is motivated by the special case of cographic
matroids. Namely, let G(V, E) be a connected graph and let

M be a matroid whose independent sets are given by subsets of
edges whose removal does not make G disconnected. Suppose
that each edge in E is removed with probability p. Then the
probability that upon completion of this process the graph
remains connected is given by R(M;p,1 — p). Reliability of
graphs and matroids has been a subject of continued interest
in combinatorics {2]. The main result of this section is:

Theorem 2: Let A(x,y) be the weight polynomial of the lin-
ear code C(M). Then '

R(M;p,1—p) <Up" *(1-p)* + A1, p) 1. (3)

In this way the reliability polynomial can be related to the
probability of undetected error for linear codes; the upper
bounds on the latter are used in the paper to derive new upper
bounds on R(M;p,1 — p).

III. PARTITION FUNCTION

Let I' = (V, E) be a finite graph with |E| = n edges and
¢(T') connected components. Consider the Potts model of in-
teraction for a physical system represented by I' [4]. Under
this model each vertex in V can be in one of g possible states;
an allocation of states to all the vertices defines a state o of
the system or a coloring of V with g colors. The partition
function of the Potts model is defined as follows:

Z(y) =Y y N,

where the sum is over all possible states o of the system and
U(o) is the subset of edges with both ends of the same color.

Theorem 3: Let A(z,y) be the weight polynomial of the g-ary
cocycle code of I'. Then

AQl,y) = ¢ Oy Z(y).

Further details are found in [1]
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Abstract — Denote by R the Galois ring of charac-
teristic p° and cardinality p°™, where p is a prime and
e and m are positive integers. Let g(z) be a monic
polynomial over F,=. A polynomial f(z) over R is de-
fined to be a Hensel lift of g(z) in R[z] if f(z) = g(z),
where — is the natural homomorphism from R onto
Fp,m , and there is a positive integer n not divisible by
p such that f(z) divides z" —1 in R[z]. It is proved that
g(z) has a unique Hensel lift in R[z] if and only if g(z)
has no multiple roots and z [ g(z). An algorithm to
compute the Hensel lift is also given.

I. DEFINITION

In 1995 the following definition of the Hensel lift of a polyno-
mial appeared in [1].

Let hy € Fz[z] be of degree m > 0 and assume that ha|(z' -
1) and ! is minimal subject to this property. There is a unique
monic polynomial k € Z4[z] of degree m such that h = h; and
h|(z' — 1) in Z4fz]. This polynomial is called the Hensel lift
of hz(x).

In the above definition the condition that ! is odd should
be added. A counter-example when ! is even is: hz(z) =
(x—1)%(z®+2+1), he | (2®~1)inFe[z], h = (z2-1)(z®+x+1)
and A’ = (2% — 1)(z® -~z + 1).

The formulation of the above definition involves some state-
ments which should be proved. Now we suggest a simpler def-
inition which can be formulated for an arbitrary Galois ring.
For Galois rings, see [2] and [3].

Let g(z) be a monic polynomial over Fym . A monic polyno-
mial f(z) over R is called a Hensel lift of g(z) if f(z) = g(x)
and there is a positive integer n not divisible by p such that
@)|(z" - 1) in Rial.

II. EXISTENCE AND UNIQUENESS

Proposition 1. A monic polynomial g(z) over Fpm has a
Hensel lift f(z) over R if and only if g(z) has no multiple
roots and z f g(z) in Fpm [z].

Lemma 2. Let ny and n; be positive integers and n =
ged(na,n2). Then ™ — 1 = ged(z™ — 1,z™2 — 1) in Fym [z],
(z™ — 1)|(z™ — 1) in R[z], and (z™ — 1)|(z"? — 1) in R|[z].

Proposition 3. Let g(z) be a monic polynomial over Fpm

without multiple roots and = f g(x) in Fpm [z]. Then g(z) has
a unique Hensel lift in R[z].

III. AN ALGORITHM TO COMPUTE THE HENSEL LIFT

Based on Propositions 1 and 3 of the proceeding section we
formulate the following algorithm for computing the Hensel
lift of a monic polynomial over F,m in R[z].

Algorithm  Given a monic polynomial g(z) of degree
> 0 over Fpm to compute the Hensel lift of g(x) in R[z] we
proceed in the following steps.

1. Test whether z|g(z) in Fym [z].

If yes, we are finished and g(z) has no Hensel lift in
R[z].
If no, go to step 2.
2. Compute ged(g(z),¢'(z)) and let it be d(z).
If deg d(z) > 0, we are finished and g(z) has no Hensel
lift in R[z].
If degd(z) = 0, go to step 3.

3. Factorize g(z) into a product of distinct monic irre-
ducible polynomials over Fpm by Berlekamp’s Algo-
rithm. Let the result be

9(z) = g1(z)g2(2) - - - gr(2),

,9r(z) are distinct monic irre-
Let deggi(z) = ni,i =

where g1(z), g2(x),. ..
ducible polynomial over Fpm .
1,2,...,7 and go to step 4.

4. Compute lem[p™™ —1,p™"2 —1,...,p™"" —1]. Let the
result be n, then p does not divide n and g(z)|(z™ — 1).
Go to step 5.

5. Divide z™ — 1 by g(z) by division algorithm. Let the
quotient be gi(z). Then z" — 1 = g(z)g:1(x) and
ged(g(z),91(z)) = 1. Go to step 6.

6. By the constructive proof of Hensel’s Lemma construct
two coprime monic polynomials f(z), fi(x) € R|z]
such that z" — 1 = f(z)fi(z) in R[z] and f(z) =
g(z), f1(x) = gi(x). Then f(z) is the Hensel lift of
g(z) in R[z]. =]

When Fpm = F; and R = Z4, the Hensel lift of a polyno-
mial g(z) over F; without multiple roots and not divisible by
z can be calculated by using Graeffe’s method for finding a
polynomial whose roots are the squares of the roots of g(x),
see [4] and [5].

REFERENCES

[1] Bonnecaze, A., Sole, P, and Calderbank, A. R., “Quaternary
quadratic residue codes and unimodular lattices,” IEEE Trans.
Inform. Theory 41(1995), 366-377.

[2] Krull, W., “Algebraische Theorie der Ringe,” Math. Ann.
92(1924), 183-213.

[3] MacDonald, B. R., Finite Rings with Identity, Marcel Dekker,
1974.

[4] Uspensky, J. V., Theory of Equations, McGraw-Hill, 1948.
[5]) Wan, Z.-X., Quaternary Codes, World Scientific, Singapore,
1997.

0-7803-5857-0/00/$10.00 ©2000 IEEE.



ISIT 2000, Sorrento, italy, June 25-30,2000

On Superimposed Codes Based on Incidence Systems

Antony J. Macula
State University of New York
College at Geneseo
Department of Mathematics
Geneseo, NY, 14454, USA
e-mail: macula@geneseo.edu

Abstract — Binary superimposed codes were intro-
duced by W.H.Kauts and R.C.Singleton in 1964 [1].
In [2] a concept of superimposed code distance was
suggested. In 1996 a new construction based on the
incidence of the finite sets was suggested [3]. It was
studied and generalized in [4, 5]. We consider the
further extension of this construction, which allows
to create new superimposed codes from the existing
ones. We also find the superimposed distance for this
construction. Part of this work was presented in [6].

I. NOTATIONS AND DEFINITIONS

Definition 1. An incidence system is a triplet T =
(A, B, <), where 4 and B are finite sets and < is an incidence
relation between them, i.e. for any a € A and b € B either
a<b,orafb. Put N=N(T) 2 |A and t =t(Z) 2 |B|
An incidence matriz of T is binary N X ¢t matrix X (Z), which
rows and columns are indexed by elements a € A and b € B,
respectively, and an element za(b) =1 iff a < b.

For an incidence system Z and an integer s > 0 put

Ps(Z) 2 {(r,b) : TCB,|r|<s, beB\r}.

Definition 2. A pair (7,b) € P,(Z) is called disjunctive if
the disjunctive set of this pair D(r,b) # &, where

D(r,b)2{a€A:a<b,agb forb er}.

Definition 3. For a system Z and an integer s > 0 the.

value

A .
Ds(7) = i |D(r, §)|
is called the superimposed s-distance of I.

Definition 4. If a superimposed s-distance D,(Z) > 0
(ie. all pairs (1,b) € Ps(I) are disjunctive) then Z is called
an s-disjoint system. In this case the incidence matrix X (Z)
is called a superimposed code of strength s, size t(Z) and length
N(Z) [1, 2]. The value D,(Z) is called the superimposed dis-
tance of this code [2].

II. DESCRIPTION OF THE CONSTRUCTION

Let n > m > h > 1 be integers and I £ (A, Bx, <x) be
arbitrary incidence systems, 1 < k& < n. In this section we
define a new incidence system Z = Z(n,m, h, I1,...,I,).

Consider a new zero symbol “0”. For each k = 1,...,n
define the new incidence system If £ (A2 BP, <?), where
AL £ A, u{0}, B £ BLU{0}, and the relation < is defined
as follows: 1) 0 <2 b for any b € BY; 2) a A% 0 for any a € Ay;
:3) at the sets Ay and By relation < is the same as <.

1The work of P. Vilenkin was supported by the Russian Founda-
tion of Basic Research, grant 98-01-00241.

Pavel A. Vilenkin!

Moscow State University
Faculty of Mechanics & Mathematics
Department of Probability Theory
Moscow, 119899, Russia

e-mail: paul@vilenkin.dnttm.ru

Put Z(n,m,h, I1, ..., I.) £ (A, B, <), where the sets

A& {a=(a1,...,an) : ax € AD, |a]| =R},
B2 {b=(b,...,ba) : by € BY, |b| =m},

where |a] and |b| denote the number of non-zero components
in vectors a and b, respectively, and the incidence relation <
between A and B is defined component-wise, i.e. a < b if and
only if ay <2 by for all k=1,...,n. ’

This construction generalizes those which were considered
before [3, 4, 5].

III. PROPERTIES OF Z = Z(n,m,h,I1,...,I,)
Theorem 1. Assume that 1 < s < h and the system Iy is
s-disjunct for allk € {1,...,n}. Then I is also s-disjunct.
Theorem 2. Assume that s > 1 and the system T s s-
disjunct. Then I, is also s-disjunct for each k € {1,...,n}.

For positive integers s and h denote by Vi(s) the set of vec-
tors v = (v1,...,vs), which components v; are non-negative
integers, and the sum v, -+ --- + vp = 5. For each vector v
denote by |v| the number of positive components vi.

Theorem 3. Let n > m > h > 1 be integers and I be an
arbitrary incidence system. For any s > 1 the superimposed
s-distance of the incidence system T = Z(n,m,h,I,...,I) has
the form

. 3
. [m=}v]|
D,(Z) = min (h _ M) kl'_Ilvu(z),
where the minimum is taken over all vectors v € Vx(s), for
which |v] < s.
In general case, when the systems I are not the same, the
formula for Ds(Z) can be found in [6].
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I. INTRODUCTION

Let Do, ..., Dn be the {0,1}-matrices forming an associ-
ation scheme. Since Z:zo Dy is the all-one matrix, a lin-
ear combination Z::O ¢k Dy can be regarded as the matrix
(f(z,y))x.y representing the function f defined by f(z,y) = cx
if (z,y) is in relation corresponding to matrix D;. Parame-
ters of functions thus obtained may now be studied exploiting
properties of the association scheme.

One such parameter is the communication complexity
C(f), which is the number of bits that two persons have to ex-
change in order to evaluate f(z,y), when initially one person
only knows z and the other person only knows y. Commu-
nication complexity turned out to be an important topic in
computer science, cf. [4]. Connections between communica-
tion complexity and information theory are discussed in [2]
and [3]. The function under consideration is the function

fla.y) = 1 if z,y are in relation k., k odd
LY =Y 0 if z,y are in relation k, k even

The communication complexity can be excatly determined
if for z = 0,1 all eigenvalues of the matrices

> o

k=: mod 2

M:(f) =

are different from 0. Already in [5] we derived the following
identity for the Krawtchouk polynomials K (i,q,n).
Theorem 1 [5]: For z = 0,1 it is

| Lq" +(-1)*(2-q)") i=0
Z Kk(17Qvn) = { (_ql>z2i-—1(2 _ q)n(—]z-H ;L > 1
k=z(mod 2)

The idea of proof in [6] is to exploit the simultaneous di-
agonalizability of the matrices Dy, ..., D, of the association

scheme and a recurrence formula for their eigenvalues due to
Delsarte [1]

Fli,kn) =b"F(i—-1,kn-1) b "Fli—1,k—1,n-1)

The Krawtchouk polynomials and also the Eberlein poly-
nomials Ex(,n,l) = Z;zo(—l)j (;) (;‘:]’) (’If;’) obey this re-
cursion with b=1

If the function f is defined on the Johnson scheme, then
the eigenvalues of M.(f) for z = 0,1 are linear combinations
of the Eberlein polynomials

C’(Zvnv(J) = Z

k=: mod 2

Ei(i,n,l), i=0....,n

Theorem 2: For the function f when defined on the
Johnson scheme the matrices AL(f), z = 0,1, have full

rank if for all ¢ = 1,---,n the Krawtchouk polynomials
Kn-is1(n —i+4 1,1+ 2i — 2,2) are different from 0.

Proof: First observe that the eigenvalues eo(z,n,l) (and
n > 1) are both positive for z = 0,1 as the sum of positive
terms and hence different from 0.

e(0,n, ) =€i-1(0n—1,1+2)—e;-1(l,n - 1,1 +2)
n—i+l1
=971 Z (-1 Ex(0,n—i+ 1,1+ 2i = 2)
k=0
= (=D, =i+ 1,04 21— 2,2)

So the problem here is to determine, when a Krawtchouk
polynomial Ky (k, m,2) (the degree and the first variable being
the same) can be 0. This is possible for m evenand k = 5. We
didn’t find any other parameter pair (k,m) with this property.

A third family of orthogonal polynomials obeying the above
recursion are the b-analogues of the Krawtchouk polynomials

k . N k-j-1
3 (=16 <;) (::;) I (-6

7=0 t=0

where (':) denotes the Gaussian binomial coefficient. The
eigenvalues of the association schemes of bilinear forms over
GF(b) have as parameters a prime power b and ¢ = b” for
some nonnegative integer 7. The eigenvalues of the association
schemes of alternating bilincar forms have as parameters b =
p? the square of a prime p and ¢ = p or ¢ = % (cf. [1]). By
calculation modulo 2 it can be derived

Theorem 3: Let a function f be defined as above on the
association scheme of bilincar forms over GF(b) or on the
association scheme of alternating bilinear forms. Further let
the prime p defining the parameters b and ¢ be odd. Then the
matrices AM:(f), z = 0,1, have full rank if b — 1 is not a power
of 2.
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Abstract — The design of practical and powerful
codes for protection against erasures can be reduced
to optimizing solutions of a highly nonlinear con-
straint satisfaction problem. In this paper we will
attack this problem using the Differential Evolution
approach and significantly improve results previously
obtained using classical optimization procedures.

I. INTRODUCTION

Based on the theoretical results proved in [1], we will in this
paper attack a nonlinear constrained satisfaction problem the
solutions of which correspond to highly efficient codes. The
optimization problem involved will be attacked by Differential
Evolution, a robust optimizer which has proved quite effective
for similar types of problems.

The codes from [1] are built from sparse bipartite graphs
and generalize a classic construction of Gallager [3]. After
collecting the information contained in the received bits, the
algorithm removes the corresponding variable nodes from the
graph together with all edges emanating from them. Then,
at each round, it looks for a check-node of degree one, copies
its content into its unique neighbor, updates the values, and
removes the variable node and all edges emanating from it
from the graph. The decoder is successful if the final graph
is empty. It was shown in [1] that if the graph is sampled
uniformly at random from the ensemble of graphs with de-
gree distributions (X, p) (see below for a definition), then the
algorithm successfully recovers from a random é-fraction of
erasures with high probability iff A(1 — p(1 — z)) < z for
z € (0,8). If AM(z) = 3, Mz~ " and p(z) = 3, piz*~", then
we say that the graph has degree distribution (), p) if the frac-
tion of edges connected to a variable (check) node of degree ¢
is A; (pi). The task at hand is now to find appropriate polyno-
mials A and p with nonnegative coeflicients that give rise to a
code of a given rate such that the above inequality is satisfied
for a large value of 4.

II. DIFFERENTIAL EVOLUTION

The code design problem as described above is a nonlinear
constraint satisfaction problem with continuous space param-
eters, a problem class where Differential Evolution (DE) [2]
has proven to be very effective. The main properties of DE are
(1) Initialization in which, similar to evolutionay strategies, a
random first generation of vectors is created which changes
over time according to (2) mutation, and (3) recombination,
(4) selection of the survivors, and (5) the stopping criterion.
What gives DE its name is the differential nature of the muta-
tion step, in which at each round random pairwise differences
of two pairs of population vectors are added to population

Rainer Storn
Infineon Technologies
Balanstr. 73
D-81541 Miinchen, Germany
e-mail:
rainer.stornQinfineon.com

members. The recombination scheme follows usual evolution-
ary algorithms. The reader is invited to consult [2] for more
information on DE. :

1I1. CODE DESIGN

For designing the code, we started by fixing the rate of the
code and randomly producing degree distributions giving rise
to codes of that rate. For doing this, note first that the con-
ditions relating the coefficients of A(z) and p(z) force the free
coefficients of these polynomials to lie in a finite polytope. Our
first task is then to choose random elements from this poly-
tope. To achieve this, we implemented a different strategy,
known as the “Queen’s move”:we started with some point in-
side the polytope constructed deterministically, and repeated
the following procedure between 50 and 100 times: we ran-
domly selected a line through the point, and randomly se-
lected a point on that line inside the polytope. This gave
us one population member. For the next members, we re-
peated the whole procedure again, until all the (initial) popu-
lation members were generated. To reduce the dimensionality
of the problem, we did not let the node degrees on the left
and the right take on all possible node degrees in a given
range. Rather, we experimented with the idea to force to
zero those A; and p; which have small values and to not
treat them as free parameters subject to optimization. Typ-
ically, we chose the node degrees in the following way: on
the left hand side, we chose the degrees 2, 3, & highest de-
gree (between 20 and 30) and one degree in between. On
the right hand side, we chose two consecutive degrees, either
7 and 8, or 8 and 9. By way of an example, we mention
of the rate 1/2 sequences that we found with our method:
A(z) = 0.26328z+0.18020z + 0.27000z° +0.28649z%°, p(z) =
0.63407z" 4+0.36593z%. The highest & value for this sequence is
0.4955. It can be shown that, given the highest possible value
attainable with the average degrees of the graphs induced by
these distributions is 0.4985. Hence, this sequence is within
less than 1% of the optimum. Other very good sequences will
be presented in the talk.
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Abstract — In this paper, new results on inser-
tion and/or deletion correcting codes are presented.
Firstly, new properties relating codewords to sub-
words are investigated. Secondly, a new error cor-
recting scheme based on convolutional coding, is pro-
posed.

I. CODEWORDS AND COMPUTER SEARCH

An alternative way of representing binary words is used
which simplifies the process of determining subwords after in-
sertion/deletion errors. All the binary words are characterized
by the length of runs present in the word as well as the starting
bit, e.g. 10000100 — 1412/1. In the case of deletion errors, all
the subwords can be obtained by decreasing the size of each
run present in the word. If the first run’s size is 1 and it is
deleted, the starting bit will change. If any other run of size 1
is deleted, the two neighbouring runs will merge. For insertion
errors, the subwords are obtained by adding bits either to the
beginning or the end of the word, increasing the size of the
runs or by splitting existing runs.

Assume that binary words of length n are used and that s
denotes the number of insertion and/or deletion errors. Since
a binary word and its complement have complementary sub-
words, it is only necessary to compute the subwords of 277!
words. Complementing the starting bit of the already calcu-
lated words/subwords forms the other 2*~! words/subwords.
This method is used to construct subword books that contain
the subwords of all 2” binary words after s = 1 errors. Us-
ing the s = 1 subword book and repeating the procedure on
all the subwords, a s = 2 subword book can be formed. By
searching the subword books, codewords can be chosen that
do not have a common subword. Cardinalities of codebooks
found by computer searching s = 2 subword books will be pre-
sented and compared to known s = 2 correcting codebooks by
Helberg [1].

By inspecting the subword books and using generating
functions, it is possible to determine the number of subwords
that a binary word will produce. The number of subwords
after deletions is dependable on the runs in the word. Let z
denote the binary codeword and 7(z) be the number of runs
in . In the case of s = 1 deletions, 7(z) subwords will be
formed. Let A(z,y) indicate the size of the y-th run in z. For
s = 2 deletions, the number of subwords will be given by:

1
5@+ +2pg—p+g) -7 (1)

where p is the number of A(z,y) = 1, ¢ the number
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of AMz,y) > 2 and r the number of A(z,y) = 1, where
2 <y < 7(z) —1. The number of new words after insertions
is dependable on the length of the word. For s = 1 insertion

there will be n + 2 new words. For s = 2 insertions it is given
by:

%(n2 +5n 4 8) @)

Because the number of new words for insertions is set, this
fact can be used to establish an upperbound. According to
Levenshtein, a code capable of correcting s deletions will also
be able to correct s deletions and/or insertions [2]. There-
fore this insertion upperbound provides an upperbound for
s-correcting codes in general.

II. NEW PROPOSED SCHEME

We further present a new coding scheme in part based on a
parallel convolution encoder. Insertion/deletion errors result
in a long burst error after the error occurred. This means that
any bits received after an insertion/deletion error can not be
used in error correcting. For this reason it is proposed that en-
coding proceed as normal, up to a certain length, but that the
encoded data be sent in reverse over the channel. This results
in an encoded data stream that is able to detect errors in the
coming data, with the assumption that data already received
is correct or already corrected by the decoder. T'wo encoders
with rates R = § and R = ; are presented. Both encoders
are able to correct insertion, deletion or reversal errors, given
that the channel is limited to one type of error.

Whenever an insertion/deletion error occurs and the syn-
drome indicates an error, a bit is deleted/inserted in a certain
place relative to the syndrome error and the syndromes recal-
culated. Since the inserted/deleted bit will not always be in
the correct position, there is a possibility of a short burst of
reversal errors. The new syndrome can then be used to cor-
rect these errors. In the case of reversal errors, the syndrome
can be used as is done for error correction.
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Abstract — It is well known that Reed-Muller

" (RM) codes are not an linear unequal error protec-

tion (LUEP) code because the set of minimum-weight
vectors span Reed-Muller codes (punctured or not)
[1,2]. In this paper, we showed that most of RM
codes are LUEP codes if RM codes are encoded with
recursively decomposed trellis oriented generator ma-
trix (TOGM) and maximum-likelihood trellis decod-
ing (MLTD) is used.

I. INTRODUCTION

Uneqaul error protection codes protect some information
bits against a great number of errors than other information
bits. LUEP codes were first introduced by Masnick and Wolf
[3]. Boyarinov and Katsman [4] found conditions for linear
codes to be LUEP. Let C be and (n,k,d) linear code. It is
shown in [1] that if the minimum-weight vectors of a linear
code C does not span it, then C is an LUEP code. It is well
known that their set of minimum-weight vectors span RM
codes (punctured or not) [2]. Therefore, RM codes are not
LUEP codes in algebraic decoding. In the soft-decision maxi-
mum likelihood decoding, bit-error-rate of RM code depends
on the weight distribution of code. If non-systematic GM is
used for encoding the RM code and soft-decision maximum
likelohood decoding is used in decoding, different set of in-
formation bits has a different bit-error-rate since each other
has different weight distribution. Therefore, even though RM
code is not an LUEP code in algebraci decoding, RM code is
an LUEP code in soft-decision maximum likelihood decoding
if systematic GM is not used for encoding.

Especially, in this paper, LUEP RM codes are constructed
by using recursively decomposed TOGM for encoding. Sim-
ulations show that bit-error-rate of some information bits is
almost twice better than that of the other information bits.
By using the recursive decomposition, a simple trellis diagram
with parallel structure for the RM code is devised. In ML
trellis decoding, information bits are retrieved directly from
the labeling of the trellis.

II. RECURSIVE DECOMPOSITION OF REED-MULLER
Copes AND ITs TRELLIS

Let RM(r,m) denote the r-th order binary RM code of
length 2™[1,2]. This code has minimum Hamming distance
d =2""" and the dimension

som=rs ()0 (7),

Let T be a (2,1,2) binary linear code with following gen-
erator matrix Gr = ( 1 1 ) And let W be a (2,2,1)
binary linear code with following generator matrix Gw =

( (1) (1) ) . Let [RM(r,m — 1)/RM(r — 1,m — 1)] denotes

1This work was supported by LSI LOGIC Corporation.

the set of representatives of the cosets of RM(r — 1,m — 1)
in RM(r,m —1) and G(r,r — 1,m — 1) be the generator ma-
trix for the [RM(r,m — 1)/RM(r — 1.m — 1)] coset code and
E(r,r —1,m—1) be the dimension of [RM(r,m —1)/RM(r —
1,m — 1)]. Then the generator matrix for RM(r,m) is as
following G(r,m) = G(r,r -1, m - 1)QCGrPG(r - 1,r -
2,m—2)Q GrQ Gw P G(r—2,m—2) & Gw @ Gw where
® and P denotes the direct product and direct addition.
Therefore, K(r,m) = E(r,r —1,m —1) 4+ 2 x E(r,r —2,m —
2)+4x K(r—2,m—2). Let K = K(r,m) =K1+ K2+ K3 =
E(r,r=1,m—-1)+2xE(r,r—2,m—2)+4x K(r-2,m—2).
Let Wy, Wa, and W3 be weight distribution of G(r,r —1,m —
1)®GT®, G(r - 1Lr—-2,m— 2_)®GT®GW®, and
G(r — 2,m — 2) @ Gw Q) Gw, respectively. Then bit-error-
rate of K, K2, and K3 information bits depend on weight
distribution of Wi, W5, and W3 respectively.

III. EXAMPLES AND SIMULATION RESULTS

Consider the RM(2, 5) code which is a (32, 16) RM code of
Hamming distance 8. Let b = (b1, b2, -, big) be the 16 infor-

mation bits and v = (v1, v2,-- -, vs2) be the the corresponding
codeword in RM(2,5). Then
v = bG(25)

= (b1,b2,bs,ba,b5,56) G(2,1,4) Q) Gr P
(b7 bs, o, bz, bus, bus) G(2,1,3) (R) G Q) Gw D
(b10,b11,b15, b16) G(0-3)®GW®GW

where On means N consecutive zeros. The first 6 bits,
b1, b2, ba, b, bs, bs, select one of the 64-subtrellises. For the
left (16,5,8) code, (br,bs,bs) selects one of the 8-subtrellises
which are of length 16. Then b selects a codeword in the
left (8,1,8) code and b1 selects a codeword in the right (8,1,8)
code. For the right (16,5,8) code, (b12,b13,b14) Selects one
of 8 subtrellises which are of length 16. Then b5 selects a
codeword in the left (8,1,8) code and bie selects a codeword
in the right (8,1,8) code. Simulation results shows that group
of bio,b11,b1s,b16 achieves about 0.14 dB coding gain over
groups of by, bz, b3, bs, bs,be and br, bs, ba, b1z, b13,b14.
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Abstract — This paper presents a class of codes pro-
tecting data on two-dimensional symbology against
errors caused by stain, tear, scratch or blurring.

I. INTRODUCTION

In two-dimensional symbology[1], nonbinary character such
as alphabet, number, etc., is two-dimensionally expressed as
pattern of black and white pixels, denoted as binary 1’ or ’0’,
in the record media. These pixels are sometimes disturbed by
stain, tear, scratch or blurring, and these make black pixels
changed into white ones, or vice versa. These disturbances
result in unidirectional errors[2](3] in a binary space.

Each nonbinary character is usually expressed in a block
of binary digits with fixed size, called byte. In some digital
systems, 2° b-bit byte patterns arc not fully assigned to g-
ary characters, that is, the total number of g-ary characters
used in the system, g, is less than 2°. Therefore, the remaining
(2> —q) b-bit byte patterns, are not used in the systems, which
gives possibility to design efficient codes.

This paper proposes a class of codes for g-ary data which
can correct single unidirectional b-bit byte errors in a binary
space, called g-ary single unidircctional b-bit byte error cor-
recting (1-UBEC) codes, with g < 2°.

II. CobpE CONSTRUCTION

Let a,c be elements in Galois field GF(p;), i.e., a,c €
GF(p1), and b,d be elements in Galois field GF(p), i.e.,
b,c € GF(p:). The set R(p1,p2) with p; X p, elements de-
fined by the following conditions is a ring:

(1) <a7b> € R(PI,P2)7

(2) <a,b> @ <c,d> = <a+1 ¢, b+2 d>,

(3) <a,b> ® <c,d> = <a X3 ¢, b x3 d>,
where +i and X; are additive and multiplicative operations
between two elements in GF(p;), i=1,2, respectively.

Theorem 1 Let H; be a parity check matriz of an (ni,n; —
r) systematic single error correcting code over GF(p;), where
1=1,2, as shown below:

Hi=[hihy...h;, |, Ho=[h{h .. 1 ],
where hi = (ao ar-1)T, a1 € GF(p1), 0 < 1 < r, and
h = (by ... br—1)T, b1 € GF(pz), 0 <1< r. The lincar code

defined by the following parity check matriz Hy over R(p:,p2)
18 a code capable of correcting single errors with type <a,B>.

H0= [<h;.h;'>... <h’1,h’"’2> l | <h’n1,h;’> <h;‘1,h’n’2>]

Here, <h,h!> (0 < i< ni1, 0<j < n2) represents vector
(<ao,bo> ... <ar_1,b.—1>)7. ]
The code construction requires function f which maps from
set V containing binary vectors with length b to R(p1,p2), i.e.,
f:V — R(p1,p2), satisfying the following threc conditions:
(1) if f(i) = (), then i=j,
@) if (f(i) = <a,b>) A (F(§) = <a,d>) A (b# d),
then weight of i is equal to that of j,
(iii) if (f(i) = <a,b>) A (f(§) = <c,b>) A (a # c),
then i and j are unordered,
where i and j are binary vectors each having length b.

Encoding Procedure: The following notations are used
in the algorithm to construct g-ary 1-UBEC codes.

di: g-Ary character, 1 <i < K.

<ai, b;>: Information element in R(p1,p2), 1 <i< K.

<a;,b;>: Check element in R(p1,p2), 1 <j<R.

d:: Binary information vector with length b, 1 < i < K.

p;: Binary check vector with length b, 1 < j < R.

f~!: Inverse function of f.

g: One-to-one function from set of g-ary characters to set
{fx)¥x € V).

h: One-to-one function from R(pi,p2) to sct of p; x pa
binary vectors each having length b.

Let (dy,dz,...,dx) be an input g-ary information vector.
Under the above preparation, encoding is shown as follows:

1) Determine the function f : V — R(p1,p;), where V has
q vectors, g < 2°.

2) Obtain information element <ai,b;> by <a;,b;> =
g(di), where 1 <i < K.

3) Obtain check element < a;,b; >, 1 < j < R, which
satisfies the following equation: ~
0= (<al s b1>7 sy <b1\'7 b1\'>a <d] 3 l;l>a “rey <aR5 bR>) : HT’
where H is an R X (K + R) shortencd matrix of Hy, and 0 is
a 1x (K + R) zero matrix.

4) Obtain d; = f~'(<a:,b:>) for 1 < i < K and p; = h(
<a;,b;>) for 1 < j < R. Finally, (ds,ds, ...,dx,p1,...,pPr)
shows the encoded output.

III. EVALUATION
Fig 1. shows that the codes are more efficient than the con-
ventional codes which can correct single unidirectional byte
errors with g = 2%, i.e., 2P-ary 1-UBEC codes(3] and the single
symmetric byte error correcting codes [2].

24} Conventional Codes Capable of Correcting
—-— 5359 £64 Single Unidirectional Byte Errors [2}(3)
——365gS
= 3659S52,R(4,16) a6 —
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O
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Information Byte Length (k)

Fig.1: Relation between the information byte-length and the
check bit-length for g-ary 1-UbEC codes, where b = 6.
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Abstract — Wiberg et al. [6] proposed graphical code
realizations using three kinds of elements: symbol
variables, state variables and local constraints. We
focus on normal realizations, namely Wiberg-type re-
alizations in which all symbol variables have degree 1
and state variables have degree 2.

A natural graphical model of a normal realization
represents states by leaf edges, states by ordinary
edges, and local constraints by vertices. Any such
graph may be decoded by message-passing (the sum-
product algorithm).

We show that any Wiberg-type realization may be
put into normal form without essential change in its
graph or its decoding complexity.

Group or linear codes are realized by group
or linear realizations.- We show that an appropriately
defined dual of a group or linear normal realization
realizes the dual group or linear code. The symbol
variables, state variables and graph topology of the
dual realization are unchanged, while local constraints
are replaced by their duals.

1. SUMMARY

Tanner [5] founded the subject of “codes on graphs,” build-
ing on Gallager’s work on low-density parity-check (LDPC)
codes [2]. A “Tanner graph” is a bipartite graph in which
there are two types of vertices, representing symbol variables
and local constraints (e.g., parity checks). Tanner also devel-
oped the algorithm now generically known as the “message-
passing” or “sum-product” algorithm for decoding codes on
graphs, generalizing Gallager’s APP (a posteriori probability)
decoding algorithm, and proved that this algorithm performs
exact APP decoding on arbitrary cycle-free graphs.

Wiberg et al. [6] made an important advance by introduc-
ing a third type of vertex, representing state variables. They
thus made connections with trellis representations of codes,
and with turbo codes and turbo decoding algorithms. Since
this work, “codes on graphs” have become the common intel-
lectual foundation for the study both of moderate-complexity
codes such as traditional block and convolutional codes, and
of capacity-approaching codes such as turbo codes and LDPC
codes [1, 3]. The more powerful codes are based on graphs
with cycles; their graph-based decoding algorithms have been
shown empirically to work very well, even though few theo-
rems are known for graphs with cycles.

In this paper, we consider Wiberg-type realizations in
which symbol variables and state variables are restricted to
degrees 1 and 2, respectively, called normal realizations. We
show that such a restriction involves no loss of generality nor

increase in graphical or decoding complexity. With this re-

striction, we are able to prove a powerful and general duality
theorem which applies to group or linear graphical models of
arbitrary topology— in particular, to graphs with cycles.

A Wiberg-type realization {6] is based on a set of symbol
variables {Ar,k € Ia}, a set of state variables {S;,j € Is},
and a set of local constraints {Cj,i € Ic}, constraining some
subset of the variables. The realization generates a code C
consisting of all symbol configurations a that occur as part of
some global symbol/state configuration (a, s) that satisfies all
local constraints. In the linear or group case, each variable
is a vector space or group, the local constraints are linear or
group codes, and the code C is then a linear or group code.

The degree of a variable is the number of local constraints
in which it is involved. A Wiberg-type realization is normal
if the degree of each symbol variable is 1 and of each state
variable is 2. For example, a conventional state realization
(trellis) has local constraints corresponding to trellis sections
that involve triples (sk,ak, Sk+1),k € Z, and thus is normal.

A normal realization is naturally represented by a normal
graph consisting of degree-1 leaf edges representing symbol
variables Ay, degree-2 ordinary edges representing state vari-
ables S;, and wertices representing local constraints C;. An
edge is connected to a vertex if the corresponding variable is
involved in the corresponding local constraint.

It is easy to show that any Wiberg-type realization may
be converted to a normal realization by replicating variables.
The normal graph of the resulting realization looks essentially
the same as the Wiberg-type graph of the original realization,
and may be decoded with the same complexity.

The dual realization of a group or linear normal realiza-
tion is the realization in which each variable is replaced by its
character group (the same variable, if its alphabet is finite),
each local code is replaced by its dual code, and a sign in-
verter is inserted in each ordinary edge. We prove that a dual
realization realizes the dual group or linear code, regardless
of the topology of the associated normal graph. This result
greatly generalizes Mittelholzer’s result [4] for dual trellises,
and shows that the dual of any code may be realized by use
of the same graph and same state spaces as the primal code.
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Abstract — The graphical representation of codes
has opened the way to soft decoding by belief propa-
gation (BP), which extends the usual soft Viterbi de-
coding. This simple algorithm is most often used for
constructing and evaluating graphical codes. We show
that belief propagation on graphs is not always appro-
priate and that the algorithmic resources for graphical
models are far more extended than BP. In particu-
lar, we propose new approximate decoders based on
the “conditioning technique” to solve the short cycles
problem of graphical codes.

I. INTRODUCTION

On graphical representations, turbo-decoding is equivalent
to the belief propagation (BP) algorithm [1]. BP on graphs
converges to the exact posterior marginals as long as the graph
has a tree structure [3). Surprisingly, the algorithm still pro-
vides a good approximation of posterior marginals even under
the presence of cycles, as turbo-codes have revealed. This
holds in particular when the graph has “long” cycles since,
around a given variable, it can be well-approximated by a
tree: measurements too far away from a given node have lit-
tle influence on this node.

The graphical construction of codes and decoders looks
very promising, but it may be somewhat misleading however,
because the construction relies on a single algorithm, which
induces a confusion between the properties of the code itself,
and those of the decoding algorithm. A “good” graphical code
can be understood as a structure providing the highest de-
gree of protection to each bit. This suggests high correlations
between variables of the graph, so that many measurements
bring information on each bit. This, in turn, suggests “com-
pact graphs” containing many short cycles. But such graphs
are precisely those for which BP is not expected to work well.
This may explain why good graphical codes found up to now
usually rely on large graphs.

However, bayesian estimation for graphical models starts
with BP, but also provides a wide range of techniques to deal
with cyclic graphs. In particular, ezact computations can be
performed despite the presence of cycles. The price to pay
is an increased complexity of the algorithm. The most inter-
esting point is that exact and approximate methods can be
mixed, which allows us to tune the trade-off between com-
plexity and precision.

II. EXPERIMENTAL FRAMEWORK : TWO-SCALE CODES

There is an easy way of augmenting the compacity of a
graphical code at low price, without disturbing too much its
apparent structure (cf figure): simple parity bits can be re-

placed by an ordinary algebraic code, whence the name two-

scale codes (cf Tanner in [2]). Re-expanding the coarse scale
structure to evidence each bit reveals that many cycles have
been introduced in the fine scale. The figure gives an example

of such a code, seen at two different scales. One can imagine
two algorithms for decoding this (26, 8) code: either BP on
the fine scale graph (-b-), or BP on the coarse scale graph (-a-),
i.e. the tetrahedron. Simulation results show that both algo-
rithms converge rapidly, but the second one is much better.
This phenomenon reveals that correlation between variables
of the graph plays a central role in the performance of an esti-
mation algorithm, and in particular that short cycles perturbs
BP very much.

II1. DEALING WITH SHORT CYCLES: BEYOND BELIEF
PROPAGATION

Conditioning. Markov field theory explains a simple and
elegant result : conditionally to a given variable X, in the field,
the remaining variables still obey a Markov field, the graph
of which is obtained simply by removing vertex X, from the
original graph. Let us consider a graphical model composed
of one cycle only. Removing one vertex in the graph 6pens the
cycle, which yields a simple Markov chain structure, that is
amenable to ezact estimation through BP. This is the basis of
the conditioning method, the originality of which is to propose
a way of properly handling the variable that has been removed.

Approximate conditioning. One interesting aspect of
the conditioning method is to offer an alternate solution to the
agregation procedure, which gets back to a tree (the “junction
tree”) by grouping variables. However, the overall complexi-
ties of both methods are similar in many cases. But condition-
ing has another interesting point : it leads to new approximate
decoding algorithms that mix the conditioning method with
approximate BP on graphs with cycles. The idea is to break
only part of the cycles, and in particular short cycles, in order
to obtain a simplified graph on which belief propagation will
perform well. This simple strategy gives excellent results, at
low cost, on graphical codes that resist the BP algorithms.
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Abstract — In a graph G = (V, E), a subset of ver-
tices C (= code) is called t-identifying if for all v € V
the sets B;(v)NC consisting of all elements of C within
distance t from v are nonempty and different. We
study some properties of these codes.

I. INTRODUCTION

Let G = (V, E) be an undirected connected graph (finite or
infinite). We denote by

Bi(v) ={z € V:d(z,v) < t}

the ball of radius ¢ centred at the vertex v € V, where d(z,v)
equals the number of edges in a shortest path between v and z.
If d(x,v) < t, then we say that z covers v (and vice versa).

A code C is a nonempty subset of V. Its elements are
called codewords. The code C is a t-identifying code if the
sets B;(v)N C, v € V, are all nonempty and different.

This definition is motivated by fault diagnosis in multipro-
cessor systems: a multiprocessor system can be modeled as
an undirected graph where the vertices are processors and the
edges the links in the system. For testing the system and
locating one faulty processor, a set of processors is selected
and each selected processor is assigned the task of testing the
vertices within distance ¢, for malfunction. Whenever it de-
tects a fault of any kind, an error message is issued, specifying
only its origin. The minimum number of selected processors
needed is the minimum size of a t-identifying code.

II. A NEw LowER BOUND FOR INFINITE GRIDS

We focus on the following four infinite 2-dimensional grids:
- the square grid, Gy;
- the square grid with one diagonal (or triangular grid), G2;
- the square grid with two diagonals, G3;
- the hexagonal grid, Gs.

A simple lower bound (see [12]) states that the smallest
possible density dg') of a t-identifying code in G; (i = 1,2,3,4)

satisfies
2

d¥ > —=
* = BY 41

where Bz(‘) denotes the size of a ball of radius ¢ in G; (size
independent of the centre of the ball). Since for i =1,2,3,4,
these sizes are given by polynomials of the second degree in ¢,
we have a lower bound on the density in Q(t~2). For the four
grids, we improve this to Q(t™').

I1I. NONEXISTENCE OF PERFECT CODES FOR ¢ > 1

A perfect t-identifying code is such that all codewords are
covered only by themselves, and all non codewords are covered
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by exactly two codewords. A perfect 1-identifying code in G2
is given in [12].

We prove that in any graph, no nontrivial perfect ¢-
identifying code exists unless ¢ = 1.

IV. COMPLEXITY

We prove that the following problem is NP-complete:
INSTANCE: a graph G = (V, E), an integer k;
QUESTION: is there a l-identifying code C C V of size at

most k? .
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Abstract — Randomized constructions are presented
for a family of linear-time encodable and decod-
able error-correcting codes using irregular expander
graphs. These codes can be encoded in constant time
and decoded in at most logarithmic time if a linear
number of processors are used.

I. INTRODUCTION

We construct a family of linear-time encodable and de-
codable error-correcting codes. These codes can also be
encoded by circuits of linear-size and constant depth and
decoded by circuits of linear-size and at most logarithmic
depth. The size of a circuit is defined as the number of
vertices, while the depth of a circuit is defined as the max-
imum length of a directed path in the circuit. The use
of irregular expanders is motivated by a recent indication
that irregular graphs give better decoding performance
than regular graphs [2].

ITI. ErRrROR REDUCING CODES
We refer to message nodes as left nodes and check node
as right nodes. We will further use = and c to represent
left and right nodes, respectively.

Definition 1 A code R of rn message bits and (1 —r)n
check bits is an error reducing code of rate v, error reduc-
tion €, and reducible distance 6 if there exists an algorithm
that, given an input word that differs from a codeword
w € R in at most p < dn message bits and v < én check
bits, outputs a word that differs from w in at most ev
messages bits.

Definition 2 A bipartite graph is an («, 3) expander if
any subset S consisting of at most a fraction a of left
nodes has at least B|0(S)| right node neighbors, where
8(S) is the set of edges attached to nodes in S.

We will sometimes refer to an («, 3) expander of rn left
nodes and (1 — r)n right nodes as an (rn, (1 — r)n, a, 8)
expander.

Theorem 3 If B is an irregular (a,%+ vl 2__) expander

where dy min 1S the minimum degree on the left nodes of
B, then R(B) is an error reducing code of error reduc-
tion % and reducible distance sy, where dy mas 15 the

mazimum degree on the left nodes of B.

Theorem 4 If B is an irregular («, %—Fﬁ) expander

and dz min > %dzvm” where dy min and dg mer are the
the minimum and mazrimum degrees on the left nodes of

B, then R(B) is an error reducing code of error reduction

% and reducible distance 5.

" IThis work was supported by NSF Grant NCR-9725251.

III. ENCODING AND DECODING

The cascading method that we use in our construction
was originally developed by Luby et al. for the construc-
tion of erasure codes [1]. Let each graph in the set {B;} of
irregular expander graphs have ok left nodes and otk
right nodes. We associate each graph with an error re-
ducing code R(B;) that has otk message bits and at+!k
check bits, 0 < i < m. We also use an error correcting
code C that has a™*1k message bits and “1_:'” check
bits. To decode C(By, -+, By, C), we simply decode the
individual codes R(By), -+, R(Bp),C in reverse order.
By choosing a code C that can be encoded and decoded
in quadratic time and choosing m such that a™+1k ~ vk,
we insure that the code C(By, - -, Bm, C) can be encoded
and decoded in linear time.

Theorem 5 Let B; be an irregular (o'k, o' 'k, 0,2 +
3 2 ) expander where dy min is the minimum degree of
the left nodes of B;, 0 < i < m. Let C be an error

i . mt2y,
correcting code of o™ 1k message bits and al_ak check

bits, o™tk ~ vk, that can correct a random ﬁ
fraction of errors, where dg maex is the mazimum dégree
of the left nodes of a B;. Then C(By,- -+, By, C) is a rate
1 — a error-correcting code that can be encoded in linear

time and can correct a random 53— fraction of errors

in linear time.

Theorem 6 Let B; be an irregular (a'k,o' 'k, a, 3 +
R 3 ) expander, dy min > gd,,mm, where dymin and
dz',m” are the minimum and mazimum degrees of the left
nodes of B;, 0 < i < m. Let C be an error correcting code

. mi2q .
of a™*k message bits and "l_a" check bits, o™tk =~

Vk, that can correct a random S fraction of errors. Then
C(By, -, By, C) is a rate 1 —a error-correcting code that
can be encoded by a linear-size circuit of constant depth
and can correct a random § fraction of errors in a linear-
size circuit of at most logarithmic depth.
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Abstract — Simple algorithm constructing search
trees for the given set of binary words is presented.
It is shown that the average cost of result of this al-
gorithm, and, hence, the average cost of the optimum
search tree is near to their natural lower bound.

I. INTRODUCTION

The problem of construction of a binary search tree for any
set of binary words has wide applications in computer science,
biology, mineralogy, etc. Construction of a tree of minimum
cost has attracted attention of many authors [1], [2], [3]. It
is known to be an NP-hard problem [4], therefore the prob-
lem arises to find simple algorithms for constructing nearly
optimum trees. We show in this paper that there is a simple
algorithm to construct search trees which are sufficiently close
to the optimum tree on average. By means of this algorithm
we prove that for the optimum tree the average number of bits
to be checked is near to its natural lower bound, i. e., the bi-
nary logarithm of the number of given words: their difference
is less than 1.04 bit.

II. STATEMENT OF THE PROBLEM AND THE MAIN
REsSuLT

Let a set of m binary words of length n, (m > 0, n > 1)
be given. Let us define the cost of the search tree L by the
equality C(L) = % 37 L, where L; is the number of bits
required for identification of the i-th word.

‘We denote by S, ,m the set of the initial data, i. e. the col-
lection of all sets of m binary words of length n (n > log, m).

Now let us assume that an algorithm F builds a tree F(S)
from the set S € Sp,m. As we will further consider randomized
algorithms, it will be convenient to denote by C(F(S)) the
expectation of the cost of the tree C(F(S)) related to the
measure given by the considered algorithm. Let us define now
the average cost tn,m (F) of the algorithm F' as follows:

tnm (F) = W S 3 o)),

n,m

where Card Sn,» means the cardinality of the set Sn m.

Now we consider, perhaps, the simplest randomized algo-
rithm of construction of a search tree, which will be denoted
by R. Its work can be described as follows.

Description of the algorithm R This algorithm makes a
binary search tree from an arbitrary set of m binary words

1This work was supported by RFBR Grant 98-01-00772.
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of length n. If the given set contains only one word then the
algorithm returns the simplest tree consisting of one leaf and
stops.

Otherwise, the randomly chosen position is brought into
correspondence with the root of the tree. For each of the
parts, into which this check divides the entire set of words,
the search tree is constructed by the same method.

The main result of this paper is the following theorem:

Theorem 1 For the average cost of the algorithm R the fol-
lowing inequality holds:
29 log,(2m)

nm <1 — - 2t 1
ta, (R)_0g2m+28 m )]

From this result the following corollary is readily deduced:

Corollary 1 Let Fop; be the algorithm which builds en opti-
mum tree for each date set. Then
L 29  log,(2m)
tn,m(Fopt) < log, m + 28~ —2m—

The following corollary contains the estimate for the cost
of the search tree constructed by R for almost-all data sets,
instead of the average estimate. It is an obvious consequence
from the Markov-Chebyshev inequality.

Corollary 2 Let us assign equal probability to every set S
from the set of initial data Sn,m (M > 2, n > log, m). Then
for every € > 0 the inequality holds:

29/28

P{S:C(R(S)) < (1 +)logym} 21~ ==

The same estimate evidently holds for the cost of the opti-
mum search tree.
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Abstract — Binary prefix-free codes in which all
codewords end with “1” are considered. A recursion
is given to construct all “optimal” 1-ended codes and
to compute the number of such codes with n code-
words.

I. INTRODUCTION AND DEFINITIONS

The problem of finding an optimal D-ary prefix-free code for
coding a source with finite output alphabet and known output
probabilities has been solved by Huffman [4]. In [1], Berger
and Yeung considered the same problem restricted to binary
codes whose codewords all end with a “1”. As all codes with
the same multiset of codeword lengths are equivalent and form
an equivalence class, it is enough to look at only one code in
each class. Berger and Yeung found a family of classes called
potential classes, which contains all optimal codes. In [2],
Capocelli et al. restricted the family of classes in which all
optimal codes must lie to the e-potential classes. Golin and
Chan (3] found a polynomial-time algorithm for finding the
best one-ended code for a given probability distribution.

Our contribution is to determine the family of optimal
codes exactly. We also give a method to compute, for any
n > 1, the number of optimal classes of codes with n code-
words.

We consider probabilities in non-increasing order and col-
lect them into a probability vector p = (p1,...,pn). A code
with codeword lengths w; < -+ < wy has length vector w =
(wi,...,wn) and multiplicity vector € = (Z1,..., Tmax; w; ),
where z; is the number of codewords of length i. Length vec-
tors and multiplicity vectors determine each other uniquely.
Our optimality criterion is the following.

For length vectors w and v with n components, w is better
than v if 3., wipi < Y, vip; for all probability vectors p
and if there is at least one probability vector for which equality
does not hold. This defines a partial ordering. A code with
length vector w is better than a code with length vector v if
w is better than ». A multiplicity vector & (corresponding
to a length vector w) is better than a multiplicity vector y
(corresponding to a length vector v) if w is better than v.

A length vector is optimal if there is no better length vector
of the same length. Optimal multiplicity vectors and optimal
codes are defined accordingly.

II. AL OPTIMAL MULTIPLICITY VECTORS

Theorem 1: Let f(z1,...,2n) = Yi, 227 + 227" A
multiplicity vector is optimal if and only if it has one of the
following forms (X is a binary string that can be empty):

e (X,a,b,b,b) with b—a > 2 even and f(X,a,b) =1;
e (X,a,b,b,b—1) withb—a > 2 even and f(X,a,b) =1,
o (X,a,a,a,b) with1<b<aand f(X,a)=1.

IThis work was performed while the author was with the Sig-
nal and Information Processing Laboratory, ETH Ziirich, Zurich,
Switzerland.

Theorem 2: From the optimal multiplicity vector (1,1,1,1),
the following operations on multiplicity vectors allow to con-
struct all optimal multiplicity vectors; moreover, the construc-
tion is unique in the sense that every optimal multiplicity vec-
tor can be constructed by only one sequence of operations:

e (X,a,0,0,b) — (X,0,0,0,b+1) (1<b<a—1);

e (X,a,b,b,b) — (X,a,b,b,b,1) and +— (X,a -

1,b+1,b+1,b) (b—a>0even,a>1),

e (X,0,b,b,b) — (X,0,b,b,5,1) (b> 2 even);
(X,a,b,b,b—1) — (X,a,b,b,b) (b—a > 2 even);
Corollary: Denote by A(n) the number of optimal multi-
plicity vectors whose components sum to n. Then A(n) =
20<a<n/3 21<b<n/3 g(n, a,b), where g behaves as follows: for
1<n <4 gnabd) =1if and only if a = b = 1 and
g(n,a,b) = 0 otherwise. For n > 5, g satisfies the following
recursions:

b

L g(n,b1)= ¥

a=
b—a even

2. g(n,a,b) =g(n—1,a,b—1)

3. g(n,a,b) =g(n—-1,a,b—1) (b—a>2even,a>0);

4. g(n,a,b) =g(n—1,a+1,b) (b—a>1o0dd,a>0).
The table below gives the first values of A(n).

gln—1,a,b) (b21);

(2<b<a)

n|An) || n| Am) || n | A(n) || n | A(n)
1 111 13 || 21 174 || 31 | 1574
2 1 12 17 |1 22 | 219 || 32 | 1929
3 1 13 23 | 23| 278 || 33 | 2362
4 14 14 30 || 24 | 348 || 34 | 2881
5 2| 15 39| 25| 437 | 35 3511
6 3| 16 50 || 26 | 544 || 36 | 4264
7 4 (17 65 || 27 | 678 || 37 | 5174
8 5[ 18 83 i[ 28 | 839 | 38 | 6258
9 70 19| 107 || 29 | 1039 || 39 | 7560
10 9 20| 136 | 30| 1279 || 40 | 9107

Tab. 1: The number A(n) of optimal length vectors of length n.
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Abstract — We study the asymptotic growth of or-
dered trees, and give important insights in coding
of trees from the information theoretic viewpoint.
Specifically, we give the optimal length function in a
sense that the Kraft inequality is satisfied with equal-
ity. It will be revealed that the commonly used pre-
order coding for special classes of trees are asymptot-
ically tight, but not always for many of trees.

I. k-ARY TREES AND GENERALIZED CATALAN NUMBERS

For k > 2 we define a k-ary tree T as follows: either T is
empty or it has a specific node called its root that is connected
to Ty, Tz, ..., Tk, each of which is a k-ary tree. We denote by
Tk(m) the set of all k-ary trees with m internal nodes. The

cardinality ck,m of ’I;c(m) is known as the generalized Catalan

number,

1 km+1

Ck""—lcm+1( m ) )

Although each k-ary tree having m internal nodes is often

identified with a binary pre-order prefix sequence of length

km + 1, the following theorem suggests the existence of more
efficient code for k-ary trees when k is greater than two.

Theorem 1 [1] For k > 2, we have

Z ck,m2_(9(k)m+l°52(k/(k‘l))} =1, (2)

m=0

where g(k) = klog, k — (k — 1)log,(k — 1) = kh(1/k) and
h(p) = —plog, p — (1 — p)log,(1 — p) is the binary entropy
function.

II. k-ARY TREES

Let us extend the results of the k-ary tree in the previous
section to that of the k-ary tree, where k = (k1,k2,...,ks) is
a vector of positive distinct integers.

Thus, a k-ary tree T is recursively defined either to be a
single node (leaf) or to have a specific node called its root that
is connected to T1,T>,..., Tk, for some k;, each of which is a
k-ary tree. We denote by 'Tk(") the set of all k-ary trees with
n nodes, including both external and internal nodes together.

From the symbolic consideration, it can be deduced that
the generating function

B
U=Uk(z) =Y tcnz" 3)

n=0

satisfies the following functional equation:
U=z+ 20" 420 4. 420", (4)

where uy.,, is the cardinality of ’Tk("), that is, the number of
k-ary trees of size n.
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Then, the coefficient uk » is given by using the generalized
Catalan numbers,

> )
- s .
n nl,ng,-'-,ns,n-z i

1+Z::lk,-n,-=n i=1
(8)

Each term in the above sum (5) represents the number of trees
which have n; internal nodes having k; outgoing branches for
i=1,...,s.

The ‘next theorem answer the size of which term in the
above sum is maximum.

Uk,n =

Theorem 2

14Ukt kg e
min = max

o Z Sieat
-

H 1P1--sPs
PRAACD JEREY 2 )’

where H(po,p1,...,Ps) = Zf:o —p; log p; is the entropy.

III. OPTIMUM LENGTH FUNCTION FOR k-ARY TREE

CODE
Setting
1 14+ a5 + .. 4 gk
MR S o -
p 0
where
14+ a% + 3% 4o @b = ka4 k™ o+ ke, (8)

we can deduce from analytical considerations that p is the
dominant positive singularity of Ui(z), and

Ui(p) = Ux(x™") = 4. (9)
That is, we have

Theorem 3

Zuk‘ne—((logn)n-flogﬁ} = 1. (10)

n=1

Thus, the length function lk(n) = (log k)n + log @ satisfies
the Kraft inequality with equality. This function is best possi-
ble in a sense that the coefficient of the linear term cannot be
made smaller than logk so far as we want to have separable
codes for k-ary trees.

REFERENCES
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Universal Lossless Coding of Sources
with Large and Unbounded Alphabets!

En-hui Yang and Yunwei Jia
Dept. of E&CE, University of Waterloo, Waterloo, ON, Canada N2L 3G1

Emails: ehyang@bbcr.uwaterloo.ca

Abstract — A multilevel arithmetic coding algo-
rithm is proposed to encode data sequences with large
or unbounded source alphabets. The algorithm is uni-
versal in the sense that it can achieve asymptotically
the entropy rate of any independently and identically
distributed integer source with a finite or infinite al-
phabet, as long as the mean value is finite.

I. INTRODUCTION

In many data compression systems, one often has to ef-
ficiently compress integer sequences. For example, in run-
length coding, one has to efficiently encode a sequence of runs
of 0's and 1's, which is transformed from the original binary
sequence; in grammar-based coding[4], one has to efficiently
compress a sequence of integers with potentially unbounded
number of distinct integers.

When the size of the alphabet from which data sequences
are drawn is large enough, however, the problem of universal
compression of these data sequences is not as simple as it
may look like. Due to the well-known underflow and overflow
problems, finite precision implementations of the traditional
adaptive arithmetic coding[2] cannot work if the size of the
source alphabet exceeds a certain limit. On the other hand,
although some existing coding schemes such as the Golomb
codes, Elias codes[1], and their variants can process integer
sequences with infinite alphabets, they are not universal in
the sense that, for most memoryless sources, their compression
rates are strictly above the entropy rates of these sources.

In this study, we propose a new practical coding method,
called multilevel arithmetic coding, to encode data sequences
with large or even unbounded alphabets. For any data se-
quence X = 2122 +-+Zn to be compressed, let Sx denote the
set that consists of all the distinct symbols appearing in X.
In general, as X gets longer and longer, Sx may grow without
bound. This new method converts the dynamically changing
set Sx into a dynamic tree, whose leaves represent small sub-
sets of Sx and, together, form a partition of Sx. For each
symbol z; in the sequence X, let y; denote the path in the
tree from the root to the leaf containing the symbol ;. Let z;
denote the index of ; in the corresponding leaf sub-alphabet.
The sequence X is then fully represented by the sequences
Y =4p1y2---yn and Z = 2122 -+ z,. From information the-
ory, we have

H(X)=H(Y,Z) = H(Y) + H(Z]Y), 1

where H(X), H(Y, Z), and H(Y) are the empirical entropy of
the input sequence X, the path and index sequence (Y, Z), and

1This work was supported in part by the Natural Sci-
ences and Engineering Research Council of Canada under Grant
RGPIN203035-98, by the Premier's Research Excellence Awards of
Ontarion, and by the Communications and Information Technology
Ontario.

yjia@bbcr.uwaterloo.ca

the path sequence Y, respectively, and where H(Z|Y) is the
empirical conditional entropy of the index sequence given the
path sequence. The above equation implies that to encode X,
one may instead encode Y first and then conditionally encode
Z given Y. This forms the information theoretical basis for
the proposed multilevel arithmetic coding algorithm.

I1. ALGORITHM DESCRIPTION AND OPTIMALITY
REesuLT

Consider the general case that the alphabet may increase
without bound, and the decoder does not know how it grows.
To encode such a data sequence X = zyz2-+-2,, we com-
bine Elias coding[1] with a dynamically updated binary search
tree. The proposed algorithm works as follows: For each sym-
bol z; in the input sequence, if it has not appeared before in
Zy -+ i1, use the Elias code to encode z; and then add this
symbol to the corresponding leaf sub-alphabet and update the
tree structure; if z; has appeared before, then encode the cor-
responding path in the dynamic tree and the index in the cor-
responding leaf sub-alphabet. For the details about how the
dynamic tree is updated, and other details of the algorithm,
please see the full paper(3]. Here we just give the following
theorem without proof.

Theorem 1 For any i.i.d. integer source {z;}{2, with finite
mean, the proposed algorithm can achieve asymptotically the
entropy rate of the source.

IT1. CoNCLUSION

The advantages of the proposed algorithm over the traditional
adaptive arithmetic coding algorithm are two folds: (1) the
proposed algorithm can be used to encode any data sequence
no matter whether the corresponding source alphabet is finite
or infinite, while the traditional adaptive arithmetic coding
algorithm can work only for data sequences with bounded,
small alphabets; (2) in the situation in which the traditional
adaptive arithmetic coding algorithm can work, the proposed
algorithm can reduce coding complexity and improve com-
pression performance.
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An Efficient Test for the Possibility of Information-Theoretic Key
Agreement Secure Against Active Adversaries

Stefan Wolf 1

Abstract — We describe a mechanical model for rep-
resenting discrete distributions and show that it leads
to an efficient test for the possibility of key agreement
unconditionally secure against active adversaries.

I. MOTIVATION

Assume that two parties Alice and Bob have access to
independent realizations of the random variables X and Y,
respectively, and that an adversary Eve knows Z. Let Pxyz
be the joint distribution of the three random variables. Can
Alice generate a string M such that Bob is convinced that
M comes from Alice and not from Eve? Clearly, the answer
to this question depends on Pxyz, more precisely, on the
following property of Pxyz.

Definition 1. Let X, Y, and Z be random variables.
Then X is simulatable by Z with respect to Y, denoted by
simy (Z — X)), if there exists a conditional distribution Pg,,
such that Pgy = Pxy holds, where Pgy = 3 Prz - Px 5.

It is not surprising that Eve can impersonate Alice towards
Bob if and only if simy(Z — X) holds. In case of non-
simulatability, the string M can be a sufficiently long block
of independent realizations of X.

Another, closely related, application of the simulatability
condition is the following. The XY Z-scenario was consid-
ered with respect to the question whether Alice and Bob
can, by communication over an insecure channel,” generate
a secret key S about which the adversary has virtually no
information. As the important quantities in this context,
the secret-key rate S(X;Y}|Z), with respect to passive ad-
versaries, and the robust secret-key rate S*(X;Y||Z), secure
against active adversaries with complete control over the com-
munication channel, were defined [1]. It was shown that ei-
ther S*(X;Y||Z) = S(X;Y||Z) or S*(X;Y]||Z) = 0 holds,
and that the simulatability condition separates the two cases:
If neither simy (Z — X) thor simx(Z — Y') holds, then secret-
key agreement secure against active adversaries is possible at
the same rate as against passive wire-tappers, but completely
impossible otherwise.

Unfortunately, the simulatability condition is a priori not
very helpful since it is not clear how it can be verified in finite
time, let alone efficiently. It is the goal of this note to present
a new intuitive formalism based on a mechanical model, and
to show that this leads to efficient criteria for simulatability.

II. A MECHANICAL MODEL FOR DISCRETE
DISTRIBUTIONS AND CHANNELS

Let us consider the following representation of joint distri-
butions of discrete random variables U and V. For simplicity,
we assume that V is binary, i.e., ¥V = {vo,v1}. Then the
constellation My..v is defined by the list of pairs Myv :=
(Py(u), Pyjy=u(v0))ueu.. The pairs of such a constellation

!Department of Computer Science, ETH Ziirich, CH-8092
Ziirich, Switzerland. E-mail: wolfQinf.ethz.ch

M = (my,a:)i=1... can be represented as mass points in the
interval [0, 1], where m; determines the mass of a point, and
a; is its position. (This representation is one-dimensional be-
cause V is binary.)

m, m, m, m,
* o ®
3 (=0) 2, 2 3 =)

Definition 2. Let M = (m.,a;)i=1..: be a constellation with
3> m; = 1. The center of gravity of M is defined as 3" m;a;.
from M by mass splitting if it arises from M by replacing a
pair (m.,a:) by two pairs (pmi,a;) and ((1 — p)m;,a;) for
some 0 < p < 1. Furthermore, M’ is derived from M by
mass union if two pairs (m;,a;) and (mj,a;) are replaced
by the single pair (m: + m;, (mia; + mja;)/(m: + my)),
corresponding to the sum mass in the center of gravity of the
two masses. We call mass splitting and mass union basic mass
operations. Neither of them changes the center of gravity.
A constellation M is called stronger than M’, denoted by
M ~» M, if there exists a finite sequence of basic operations
that transforms M into M'.

Note first that simy(Z — X) is equivalent to
Mzey ~ Mxcy. The reason is that a channel Pg,
can be translated into a sequence of basic mass operations
in the mechanical model, and vice versa. However, this
does not directly lead to an efficiently verifiable criterion for
simulatability. It is only a reformulation of the condition. We
now define a property of a pair of mass constellations which
is efficiently checkable and equivalent to one constellation
being stronger than the other.

Definition 3. For a mass constellation M and for 0 < ¢ < 1,
we denote by £:(M) the leftmost masses of M of total amount
t. A constellation M’ is called more centered than M,
denoted by M’ < M, if for all ¢, c(£:(M’)) > c(£:(M)) holds,
where ¢(S) stands for the center of gravity of a set S of masses.

Given two mass constellations M and M’, this condition
can be checked in linear time. Indeed, note that M’ < M is
equivalent to the fact that for every 1 < k < I, the center of
the set of masses mf, ..., m} is not left of (i.e., smaller than)
the center of l’"'1+'“+mi (M).

Theorem 1. Let P}(yz be the joint distribution of ran-
dom wvariables X, Y, and Z, where Y is binary. Then
simy (Z = X) is equivalent to Mx .y < Mz y.

If Y is N-ary, the distribution can be represented in an
(N—1)-dimensional space. However, the straight-forward gen-
eralization of the above condition is not always sufficient. It is
an open problem to find an efficient test for the general case.

REFERENCES
[1] U. Maurer, “Information-theoretically secure secret-key agree-
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CRYPT ’97, LNCS, vol. 1233, pp. 209-225, 1997.
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From Weak to Strong Information-Theoretic Key Agreement

Ueli Maurer !

Abstract — In the original definitions of information-
theoretic secret-key agreement, the required secrecy
condition was too weak. We show, by a generic reduc-
tion, that it can be strengthened without any effect
on the achievable key-generation rate.

I. MODELS OF INFORMATION-THEORETIC
SECRET-KEY AGREEMENT

Motivated by Wyner's wire-tap channel (7], different set-
tings for information-theoretic secret-key agreement have been
proposed by Csiszar and Kérner [3] and Maurer [5]. Whereas
in the model of [3], Alice is connected to Bob and Eve by a
noisy broadcast channel characterized by Py zx (Alice sends
X and Bob and Eve receive Y and Z, respectively), only corre-
lated information, but not insecure communication is regarded
as a resource in the model of [5]. Here, the parties Alice and
Bob are connected by a noiseless and authentic but otherwise
insecure channel and have access to random variables X and
Y, respectively, whereas the adversary knows Z.

In both settings, the capability of generating a secret key
has been defined asymptotically as the maximal achievable
key-generation rate (i.e., the number of resulting key bits per
channel use or per realization of the triple XY Z, respectively)
such that the adversary obtains information at an arbitrar-
ily small rate only. The corresponding quantities were called
the secrecy capacity Cs(Pyzx) [3] and the secret-key rate
S(X;Y]|Z) [5], respectively. However, the secrecy condition
which only limits the rate at which Eve obtains information
about the key does not imply that the adversary’s informa-
tion is bounded in an absolute sense, let alone negligibly small.
This is clearly unsatisfactory and motivated the definition of
strong variants of secrecy capacity Cs(Pyz|x) [2] and secret-
key rate S(X;Y}|Z) [4], requiring that the adversary’s infor-
mation about the resulting key is small in total.

In [4], a lower bound on S(X;Y||Z) was shown, whereas
in [2], a result similar to Corollary 2 below was proved
(with techniques different from ours). In this note we de-
scribe a generic method for strengthening the security of any
information-theoretic key agreement by using only a negligible
amount of extra communication from Alice to Bob and such
that the effective key-generation rate is asymptotically equal
to the rate with respect to the weak definition.

II. A GENERAL METHOD FOR STRENGTHENING THE
SECURITY

Definition 1. Let € > 0 be a real number and let N be a
positive integer. A weak key agreement with parameters € and
N (K A(e,N) for short) between two parties Alice and Bob
and with respect to an adversary Eve outputs three random
variables S4, Sp, and U, known to Alice, Bob, and Eve, re-
spectively, such that Prob[S4 # Sg] < ¢, H(S4) >.(1 —¢)N,
and I(S4;U) < eN hold.

Such key agreement is called strong, denoted by K A(e, N),
if the random variables Sa4, Sp, and U satisfy the following

!Department of Computer Science, ETH Ziirich, CH-8092
Ziirich, Switzerland. E-mail: {maurer,wolf}Qinf.ethz.ch
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more restrictive conditions. There must exist a string S with
Prob[S =S4 =S8]>1-¢, H(S) =1log|S| > (1 —¢)N, and
I(S;U) <e.

Theorem 1. Assume that a noiseless channel from Alice to
Bob is given to which Eve has perfect read access. Then weak
key agreement can be converted into strong key agreement
such that the key is generated asymptotically at the same
rate and the amount of required eztra communication 1is
asymptotically vanishing. More precisely, for every e > 0
there ezists a > 0 such that for all sufficiently large M
and for all sufficiently large N, KA(e, N) can be reduced to
K = (1+ 0o(1))N/M realizations of KA(a, M) such that the
length len(C) of the message C sent over the insecure channel
by Alice is of order len(C) = o(N).

The proof idea is as follows. First, weak key agreement
is repeated many times. Then, error correction information is
sent from Alice to Bob (and hence to Eve), allowing Bob to re-
construct Alice’s sequence of weak keys with high probability.
Finally, this string is transformed into a highly secret key by
privacy amplification. Universal hashing, as proposed in [1], is
not a good choice for hashing the string in this situation since
the required amount of communication, i.e., the specification
of a particular function from the universal class, would be too
high (thus reducing the achievable key-generation rate in the
broadcast-channel model). As a new method in this context,
we use eztractors [6] instead. This allows for keeping the extra
communication negligible.

Theorem 1 directly implies that in both models described
above, the secrecy requirements can be strengthened without
effect on the achievable key-generation rates.

Corollary 2. C_S(Pyz|x) = Cs(Pyz|X) .

Corollary 3. 5(X;Y||Z) = S(X;Y]|2) .
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Abstract — Information hiding is analyzed as a com-
‘munication game between an information hider and
an attacker, in which side information is available to
the information hider and to the decoder. Capacity
formulas are derived.

I. STATEMENT OF THE PROBLEM

Information hiding is an emerging research area which en-

‘compasses applications such as watermarking, fingerprinting,

and steganography. This paper extends results from [1]; see
[2] for more details.

Consider a host-data source producing random variables
X taking values in a finite alphabet X, a cryptographic—key
source producing random variables K € K, and a message
source producing a message M from a message set M. The
host data is a sequence XV = (Xi,---, Xn). A cryptographic
key K = (K1, -+, Kn) is available both at the encoder and
the decoder. In particular, KV enables the use of random-
ized codes. The pairs (X;, K;) are i.i.d. p(&,k). This model
includes K = X as a special case [1]. The message M is uni-
formly distributed over the message set M. The information
hider passes XV, KV, and the message m through an embed-
ding function fn, producing composite data X~ that are made
publicly available!. Next, the attacker passes X~ through a
random attack channel Q% (y" |z ) to produce corrupted data
Y™, in an attempt to remove traces of M.

Both the embedding and the attack are subject to dis-
tortion constraints, respectively Ed™ (&V, fn (2", m, k")) <
Di and Ed¥@=V,yV) < D;, where dV(V,yV) =
-]{,— Eszl d(zk,yx) is a distortion function on N-tuples. Here
d: X x X — IRy is a bounded, nonnegative function.

The rate of the code is R = % log |M|. The average proba-
bility of error is Pe,ny = I_.'\ITI Zm Pon(YN, KNy #m | M =
m), where ¢n is the decoding function. A rate R is achiev-

able for distortions (Di, D2), if there is a sequence of codes -

(M, frn,dn) subject to distortion Dy, with rates Ry > R such
that P. n — 0 as N — oo, for any attack subject to distor-
tion D;. The information-hiding capacity C(Dh, D-) is the
supremum of all achievable rates for distortions (Di, D2).

II. MAIN RESULT

Consider first memoryless attack channels. Define a covert
channel Q(x,u|, k) (to be designed by the information hider),
where u € U is an auxiliary random variable, U is an arbitrary
finite alphabet, and )7 _ .,  d(&,2)Q(=,ul%, k)p(E, k) < D1.
Denote by Q and Q the sets of admissible covert and attack
channels, subject to respective distortion constraints (D1, D2).

The proof of Theorem 1 below relies on a proof of achiev-
ability and a converse for a fixed attack channel and is closely
related to work by Gel'fand and Pinsker [3].

1P. Moulin was supported by NSF grant MIP-97-07633.
1XN is often referred to as the watermarked signal.

" a problem studied by Costa [4].
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Theorem 1 Assume the attacker knows Q and the decoder
knows Q and Q. For any attack subject to distortion D3, a
rate R is achievable iff R < C, where

C = max min
Q(=,ulz,k)eQ Qylz)EQ

J(Q.Q), 1)

(UX,K) — X — Y s a Markov chain, and
~ A .

J(Q, Q) =I(U;Y|K) — I(U; X|K).

If K = X (host data available at the decoder), the solution

. becomes a saddlepoint of I(X;Y|X) [1].

III. CONTINUOUS ALPHABETS

The results above can be extended to the case of infinite
alphabets X, U, K. The case of Gaussian X (~ N(0,0?)) and
squared—error distortion measure d(x,y) = (z — y)? is of con-
siderable interest. When K = X, the hiding capacity is given
by C = %log (l + E—DDl;) if Dy < ¢ + D1, and 0 otherwise.

-1
Here 8 = (1 - ;Q%?b—l) . The optimal covert channel @ is
given by X = X + Z, where Z ~ N(0, D;) is independent of
X. The optimal attack is the Gaussian test channel from R/D
theory, with distortion level min(D2, 0% + D).

For blind information hiding (no key), the optimal attack
Q(ylx) is again the Gaussian test channel, and the optimal
Q(z,u|Z) is the same distribution that achieves capacity in
The capacity is the same
whether or not the host ‘data are known at the decoder.

If X is non-Gaussian with mean zero and variance o2, C
above is an upper bound on hiding capacity. For small D; and
D> (typical of many information-hiding problems), a remark-
able result arises: the hiding capacity under the squared-error
distortion metric is equal to 3 log (1 + %i-) independently of
the statistics of X, asymptotically as Dy, Dy — 0.

IV. FURTHER EXTENSIONS

The results above have been extended to the case of block-
wise i.i.d. (Xi, K;) and blockwise iid. attacks. If (X;, K:)
are i.i.d., then the optimal attack is memoryless. The frame-
work developed in this paper can also be used to analyze the
performance of a variety of information-hiding systems [2].
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We consider a cryptographic scenario of two honest parties 4 and B facing an active
eavesdropper E. They share no secrete key initially but their final goal is to generate a
shared information-theoretically secure key. We develop the special case represented in
[1] where a random binary string is broadcasted by some center (like a satellite) over
binary symmetric channels and received as X, Y, Z-strings with bit error probabilities
£,y &5, € (£,<&;, £,<&,) by legal parties and the intruder, respectively. The
authentication protocol is a procedure to append some bit positions of X taken in line by
certain rule to every message being transmitted from 4 to B. This rule can be chosen as
some binary block code that compares messages and code words one-to-one. Party B
accepts the message as original if and only if the fraction of bits in the received -
authenticator that agree with the corresponding bits of his string ¥ exceeds some fixed
threshold. Otherwise B rejects the message considering it to be false. It was remarked in
[1] that the distance property of a code used for such authentication differs from the
Hamming distance and it should be changed to semidistance.

A simple construction of constant weight authentication codes based on linear
binary codes which provide fixed minimum code semidistance was given in [1].

Using this construction we derive the formulas to estimate the probabiity that a
modification of the message by an intruder is not detected by party B and the
probability that B accepts the message if an intruder has not intervened at all. We
propose several methods how to design authentication codes based on the use of
nonlinear codes that can be more effective in some cases.

Unfortunately, the use of any authentication code as a part of key sharing procedure
turns out to be inefficient because it requires so long authenticators that results in a very
small key rate. The way out of this situation is to consider the so called Aybrid
authentication that based both on a code authentication and on a hashing in the Almost
Strong Universal, class .We proof several statements and derive the formulas to
estimate its efficiency.
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Abstract — A point-to-point communication net-
work is represented by (G,C), where G = (V,€) is
a directed graph with vertex set V and edge set £,
and C = [Cjj, (i,) € £] is a nonnegative-valued vector.
A vertex in V represents a node in the communica-
tion network, and an edge (i, j) represents a point-to-
point discrete memoryless channel (DMC) from node
i to node j whose capacity is C;;. We assume that
the channels in the network are independent of each
other. An information source with entropy rate h is
generated at source node s and recovered at sink node
t with arbitrarily small probability of error. We show
that the value of a max-flow from node s to node ¢t in
(G, C) must be greater than or equal to h. This results
implies a separation theorem for network coding and
channel coding in such a communication network.

I. INTRODUCTION

A point-to-point communication network can be repre-
sented by (G, C), where G = (V,£) is a directed graph with
vertex set V and edge set £, and C = [Cij,(3,j) € £] is a
nonnegative-valued vector. A vertex in V represents a node
in the communication network, and an edge (,j) € £ rep-
resents a point-to-point discrete memoryless channel (DMC)
from node i to node j whose capacity is Ci;. All the channels
in the network are independent of each other. We assume that
there are a source node s and a sink node ¢ in G such that
the information source is generated at node s and recovered
at node t. In the network, there is a dedicated encoder E;;
at node 1 (i # t) for each output channel (3,j) € £. Each
encoder F;; receives all the information sent to node i via the
channels (¢',3) € £. At the sink node t, there is a decoder
which recovers the information source.

A code on a network of point-to-point channels can be very
complicated in general, especially if the network is cyclic. In
[1], we define a realizable code which covers almost all possible
codes on a network. A triple (G, C,h) is admissible if there
exists a realizable code on network (G, C) such that informa-
tion can be transmitted at rate h from node s to node ¢ with
arbitrarily small probability of error. Define the capacity of a
network (G, C) as the supremum of all h such that (G,C,h)
is admissible. :

II. MAIN RESULTS

Suppose there exists a realizable code on G such that an
information source with entropy rate h generated at node s
can be recovered at node ¢ with arbitrarily small probability
of error. A cut in G represents a collection of channels which
separates node s and node t. A channel across a cut is called
a forward channel if its direction is from node s to node ¢,
otherwise it is called a reverse channel. If there is no reverse
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channel across the cut, the information source, the inputs of
the channels across the cut, the outputs of the channels across
the cut, and the reproduction of the information source by the
decoder at node ¢t form a Markov chain in this order. By the
data processing theorem, the capacity of the cut (i.e., the total
capacity of forward channels across the cut) must be greater
than or equal to h.

However, a cut may contain reverse channels, even if G is
acyclic. In this case, the Markov chain to which we applied
the data processing theorem above does not always hold. The
main result in [1] is that the capacity of any cut must be
greater than or equal to h. The following theorem resembles
the Max-flow Min-cut theorem [2] in network flow theory.

Theorem 1 If (G,C,h) is admissible, then the value of a
maz-flow from the source to the sink is greater than or egual
to h.

Ahlswede et al [3] studied the problem in which for all edges
(i,7) € &, information can be sent from node i to node j
noiselessly, i.e., C;; = oo. This is the network coding problem

associated with the problem we study in this work, except

that they consider multicasting the information source from
the source node to possibly more than one sink node in the
network. Let R;; be the coding rate of encoder E;; for (i,5) €
E, and let R = [R;;, (i, j) € £]. They proved that it is possible
to multicast information at rate k from the source node to each
sink node if and only if the value of a max-flow from the source
node to each sink node in (G,R) is greater than or equal to
h. From this result and Theorem 1, we can determine the
capacity of a network.

Theorem 2 The capacity of a network (G, C) is equal to the
value of a maz-flow from node s to node t.

It also follows from this theorem that in our problem, asymp-
totic optimality can always be achieved by separating network
coding and channel coding. Generalization of our problem to
multicasting the information source from the source node to
a number of sink nodes is straightforward.
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Abstract — We introduce the real, discrete-time
Gaussian parallel relay network. This simple net-
work is theoretically important in the context of net-
work information theory. We present upper and lower
bounds to capacity and explain where they coincide.

I. INTRODUCTION

In some contexts, cooperation between terminals in a multi-
ple terminal system can enlarge the set of reliably achievable
rates. For systems where power is of primary importance, such
as in wireless or ad hoc networks, terminals can cooperate by
sending signals with a common component. This common
component coherently combines at a receiver, resulting in an
increased effective power. Exploiting this requires common
information at distributed points and synchronization of the
carriers in a wireless system. Investigating how this can be
accomplished is important for improving both real-world sys-
tems and theoretical understanding of networks.

To this end, we assume that carrier synchronization is fea-
sible and introduce the real, discrete-time Gaussian parallel
relay network, illustrated in Figure 1. We wish to find the
capacity of the network when the only source of extrinsic in-
formation is encoded into the signal X. The sole purpose of
the relays is to get the information from X to a decoder observ-
ing Y. We assume the noise processes are independent and
are white with variances Nj, N2, and N. Further, we assume
the network input and relays have average power constraints
Px, P1, and P;. The network is thus parametrized by four
signal to noise ratios (SNR’s): S; = %;, Se = ,l—;’;, Ss = F,
and Sy = %1. This network is similar to the relay channel
introduced in [1] and studied in [2]. It differs via Relay 2,
which provides an important separation between the source
and destination.

II. UPPER BOUNDS TO CAPACITY
Due to the presence of the relays, it is not surprising that
tight upper bounds to network capacity are difficult to deter-
mine. The first upper bound is a result of the data processing
theorem applied to the broadcast side of the network.
R< %I(X";Y{‘,Yz") <

%111(1 +5,452). (1)

The second upper bound is more involved and can be de-
rived almost exactly as in 2] for the physically degraded Gaus-
sian relay channel.

R < max min[% In((1+S:)(1+(1-a)S4)),

~ a€f0,1]
%m (1 +Ss +Sa + 2\/08384)] @

A similar bound holds with Sz in place of S; and the roles of
Sz and S4 reversed. These bounds are in general tighter than
the data processing bound applied to the multiple access side.
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Figure 1: The Gaussian parallel relay network

III. ACHIEVABILITY RESULTS
We first present results for the symmetric case S; = S; and
Sa = S4. We do this for two reasons. First, we reduce the
parametrization from four SNR'’s to two, thus making presen-
tation easier. Second, we highlight two fundamentally differ-
ent approaches to communicating through this network.

We first consider a natural staggered block coding scheme.
Both relays decode a block of observations and then trans-
mit identical corresponding codewords (with high probabil-
ity). The relays achieve perfect cooperation in this case, but
the scheme is limited since each relay must decode reliably.
This scheme results in reliably achievable rates up to

R= % In (1 + min[S1, 4S3]) . 3)

When S; > 483, (3) and (2) coincide, determining capacity.
The second approach views the signals Y; and Y, as in-
dependent observations of the input X. Each relay acts as a
simple transponder, amplifying both signal and noise. If X is
Gaussian, this combines the observations optimally (and the
core signal component X coherently) before the multiaccess
receiver noise Z is added. We can achieve rates up to

4S:S;3
1+253+SI). )
As the multiaccess noise power N becomes relatively small,
(T:SS;T,) — 1, (4) and (1) coincide, and network
capacity is 3 In(1 + 2S,).

Combining these approaches simultaneously is inferior to
using the better of the two schemes. However, time-sharing
between schemes at different values of S; and S3 is beneficial.
We present these results for a typical symmetric network. For
an asymmetric network, coding schemes can be based on more
general broadcast and multiple access approaches. We present
a number of these generalizations.

IV. CONCLUSION
Intuition and study of the symmetric network suggest that the
converses we have derived are not tight in general.

R=%ln(l+

ie., as
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Abstract — In this paper we present a different view
on the broadcast channel that fits better an asyn-
chronous setting, where each receiver can “listen” to
the broadcasted data at different time intervals. In
this scenario, there is a “static” fixed amount of data,
that needs to be transmitted to all receivers. Each re-
ceiver wants to minimize the receiving time, and this
way get the static data at the highest possible rate.

I. CONCEPT DEFINITION

In this work we define and analyze static broadcasting. In
this broadcasting scenario, the sender has only a fixed common
information to transmit to all receivers. We suggest the fol-
lowing definition of the rate - the number of reliably received
bits divided by the number of symbols the receiver has used to
retrieve these bits (or, divided by the information gathering
time). Under this definition, in principle, a receiver that listen
through a better channel, may gather less channel symbols in
order to estimate the transmitted message, and by this to in-
crease its rate. In the saved time it can fetch more information
from other transmitters. The term static broadcasting comes
from the notion that the information the transmitter sends is
fixed, static, and the same for all receivers.

In this work, a broadcast channel is composed of single
transmitter and d memoryless channels Wi, 1 <i <d, with
common input alphabet through which the transmitter broad-
casts to d receivers. The capacity region is defined as the
closure of the set of all possible achievable rates. A rate
(R1, Rs, ..., Ry) is said to be achievable if for any € > 0 there
exists a code with M words such that for all ¢, the ith re-
ceiver can decode, with error probability smaller than ¢, the
codeword using the first |log M/R;] channel symbols. The
achievable rate region is given by the following theorem.

Theorem 1 (R1,Rs,..., Rq) is in the capacity region iff, for
any & > 0 there ezist input priors P, P, ... and a number K
such that ;11- :=1 I(Py; W) > R; — 6 for all1 <1< d, where

In defining the capacity region for static broadcasting we
utilized the possibility of transmitting the information at a
higher rate if the receivers are not forced to be synchronously
and simultaneously connected to the transmitter. The fact
that there are various possible definitions of the capacity for
the broadcast channel, depending on the subset of time the
data is received, has been pointed out in, e.g., [1]. However,
the setting we propose is novel.

The proposed setting was further extended in [2]. For ex-
ample, in [2] there is a setting where the receivers start receiv-
ing at different arbitrary times, which may fit an IP. Multicast
scenario. Another extension corresponds to data transmission
over an unknown channel, using infinitely long codes (to allow
a channel with unbounded small capacity). Finally, universal
and sequential decoding schemes were investigated.

II. EXAMPLES OF THE CAPACITY REGION

A general method to find the capacity region for static-
broadcasting to 2 channels, is as follows. Assume the channels
conditional probabilities are W1(y|z), W2(y|z) and the corre-
sponding capacities are C1, Cz. Using the convexity of the mu-
tual information, we may assume that the input prior to the
channel is changed only at time points of the form ¢ = n; + 1.
Hence, in the case of 2 receivers, we start with prior P and af-
ter one of the receivers got all the information, it will quit, and
in order to maximize the rate to the second receiver, we shall
change the input prior to the one that achieves its capacity.
Assuming I(P;Wy) > I(P;W3). Then,
_ I(P;Wh)C2
T Co+ I(P;Wh) — I(P; Wa)'

Ry = I(P;W1), R»

Of course, any point 1 < Ri,72 < R; is in the capacity
region. To get the complete capacity region we should take
the union of the region above over all possible values of the
initial input prior, P.

In case where the capacity achieving prior is the same for
all channels we can achieve simultaneously their point-to-point
capacity. For example, two binary symmetric channels noisy
and noiseless. In that case a simple code can be shown. Take
any good systematic code for the noisy channel. The system-
atic part (the information bits are the prefix of each codeword)
is sufficient, of course, for the noiseless channel and impose an
effective rate of 1 for that channel. The noisy channel receives
the information at a rate determined by the code.

In static broadcasting, unlike regular broadcasting, time
sharing between two strategies is not a valid strategy. Hence,
the capacity region is not necessarily convex. For example,
suppose one communicates using 31 Japanese words and 31
Hebrew words. A Japanese listener can differentiate 32 dif-
ferent symbols (since all Hebrew words sound the same to
him) and the same goes to a Hebrew listener. This broadcast
channel leads to the capacity region in the figure below.

o

Japanese listener

—— static broadcast region \
osk - - regular broadcast region

co I-Elebrez\:/Iist;ner15
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I. INTRODUCTION

We consider the problem of broadcasting a bandlimited white
Gaussian source on an additive bandlimited white Gaussian
noise channel with two receivers. Several hybrid digital-analog
joint source-channel codes are proposed. The design principle
is based on bandwidth/power splitting and matched tandem
coding. The distortion regions of these codes are presented.

II. PROBLEM STATEMENT

Consider a memoryless Gaussian source, {z;}{2;, with zero
mean and variance o%. The source is to be encoded and trans-
mitted over a broadcast AWGN channel modeled by Z, =
Y + Vi, where Y is the channel input, Z, and Vj are chan-
nel output and noise for the k-th user, k = 1,2. We assume
that Zx,Y, and V; are all m-dimensional, E[||Y||?] < mP,
the components of Vj are i.i.d. with zero mean and variance
Ni,k=1,2,and 0 < N1 < N,.

An n-dimensional encoder, an, is a mapping of an n-
dimensional source vector X to an m-dimensional channel in-
put vector Y. Here, p = m/n is the bandwidth expansion
factor (or the rate of the system in number of channel uses
per source sample). We assume that p is fixed while m and
n grow large. The decoder, Bk, for user k is a mapping of
an m-dimensional vector Z; to an n-dimensional vector Xj.
Let D(Ny) = D(an, Bn,k, Ni) be the mean-square distortion
between X and X;. Shannon’s capacity-rate-distortion limit
dictates that

2

4
D(Ny) 2 ————, k=12 1
(N> T py M
We are interested in the set of all possible pair

(D(N1), D(N2)).

III. ACHIEVABLE DISTORTION REGION

A pair (di,d2) is an achievable distortion point if there
exists an encoder sequence {a,} and decoder sequences
{Bn,1,Bn,2} such that a, satisfies the power constraint and
limn oo D(an,Bnk, Nk) = di for k = 1,2. The achiev-
able distortion region is the collection of achievable distortion
points [1].

IV. MAIN RESULTS

Several hybrid-digital analog joint source-channel coding sys-
tems are proposed. Details of these systems can be found in
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p > 1 (Hybrid 3).
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Figure 2: Distortion Performances of Hybrid Digital-
Analog Systems.

traditional digital coding systems optimized for noise N, and
N3, respectively. The “Time-Sharing” dash-dot curve is the
time-sharing between these two systems (in linear scale, it is a
straight line between A and C). The “Digital” dash-dot curve
is a purely digital system presented in [3]. Fig. 2 shows that
Hybrid 3 is superior to both “Digital” and “Time-Sharing”
systems. The result shows that the region above and to the
right of the heavy solid line is achievable.
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Abstract — The chain rule of information shows that
log densities form Cauchy sequences, convergent in
L, proving information limits, Markov chain conver-
gence, and existence of information projections.

Let D(P||Q) = Eplog p(X)/q(X), A = E|logp(X)/q(X)|,
and V = [|p—gq| be the information divergence, absolute
information divergence, and total variation distance between
probability measures P and @ with density functions p, ¢ with
respect to a dominating measure on a measurable space. The
chain rule and the Pinsker-type inequality A < D + V2D,
deduced from V < v2D (which implies that if D tends to
zero then so does V and A) allow one to deduce in various
settings that log densities provide Cauchy sequences conver-
gent in L, thereby establishing information limits including
Markov chain convergence and information projections.

I. MARKOV CHAINS

Let {X,.} be Markov with stationary transition probability on
a general state space and let P, be the distribution of X,.
Theorem 1. Markov Chain Convergence. If {X,} is a re-
versible Markov chain with a unique invariant probability dis-
tribution P*, then lim D(P,[|P*) = 0 if and only if the se-
quence D(P,}|P*) is eventually finite.

Proof: Let D, = D(P,||P*). The chain rule gives Dy, — Dy,
for n > m, as a divergence (between conditional distribu-
tions for X,, given X, ), establishing monotonicity and con-
vergence of Dp, so that Dy —~ D, — 0 as n,m — oo, and
thus via the Pinsker-type inequality F|logpm (Xm)/p"(Xm)—
log pn (Xa)/P*(Xa)| — 0, so that logp.{(X,)/p*(Xa) is a
Cauchy sequence, convergent in L;. Fritz [4] used information
inequalities for reversible chains to show the total variation
convergence of P, to P*, so that p*(X,)/pn(X,) converges
to 1 in probability. Thus log pa(X»)/p*(X=), which we have
shown to be convergent in L;, must have L, limit equal to 0.

II. INFORMATION LIMITS

Let F, be a monotone sequence of sigma-fields with limit
Foo. Let P, and Q. denote the restrictions of P and @ to
Fn, let p, be the density of P, with respect to QJn, and let
"Dy = D(Pa|l@r) for n=1,2,...,00.
Theorem 2. Information Limit. If F, is decreasing or if F,
is increasing and D(P,||@») is bounded, then log pr. — log peo
in L{(P) and limy, D(Pa||@n) = D(P|Qo)-
Proof: In the case that F, is decreasing, for n > m we
have Dy — D, = f P 10g pm [pnd@ establishing monotonic-
ity, convergence, and, hence, the Cauchy sequence property,
so that, via the Pinsker-type inequalities, both f |pm—pald@
and E|logpm —logpn| tend to 0 as n,m — oco. Hence p, is
convergent in L; (Q) (denote the limit p) and log pr is con-
vergent in L; (P) with limit log peo. Sets A in Foo are in F,
for all n with P(A) = fA pndQ, so by Li(Q) convergence,
P(A)= fA pood@, that is, the limit poo is indeed the density
between the restrictions of P and @) to F. For the increas-
ing case one proceeds in the same manner using the chain rule

to extract Cauchy convergence of p, in Li(Q) and logp, in
L, (P) and to identify the limit.

Theorem 2 implies Theorem 1 using the decreasing F, gen-
erated by {Xa, Xnt1,...}. The conclusion for the limit of
increasing information is classical, see [1] and the references
cited therein. Qur analysis shows the convergence directly
from the chain rule, without appeal to a martingale conver-
gence theorem. The results for the limit of decreasing infor-
mation and the information limit of Markov chains are new.

III. INFORMATION PROJECTION

Demonstrating existence of information projections for con-
vex sets of distributions uses similar techniques. Let D(C||p)
and D(p||C) denote the infimum of D{q|lp) and of D(p|lq),
respectively, over choices of ¢ in a convex set C. The set C
might not admit a minimizer and one seeks a limit ¢* obtained
by sequences of g, approaching the infimum. Topsoe [7], see
also 3], resolves the D(C||p) case. Here we state a result for
the D(p||C) case developed further in the Thesis of Li [6].
Theorem 3. Information Projection. Let C be convex and
D(p||C) finite. There exists a unique ¢ (possibly outside of
C) such that every sequence ¢» with D(p||¢.) — D(p||C) has
logg. — logg* in Li(p). Thus D(p|l¢g*) = D{(p||C). For
all ¢ in C, ¢; = Epq(X)/q*(X) < 1 and, defining the den-
sity r = (pg/q*)/cq, we have the Pythagorean-like inequality
D(pllq) > D(pllg*) + D(pl|r), where via the Pinsker-type in-
equality D(p||r) controls the L; (P) distance between log g and
log ¢*. Furthermore, if fq =1 for all ¢ in C, then fq’ <1

Previously, Bell and Cover [2] show characterizing proper-
ties if ¢* is in C. Kieffer [5] shows if {loggq : g € C} is closed
in Ly (P), then there exists ¢* satisfying the key properties.

The proof identifies a sequence ¢» in C such that D(p|l¢.}{
D(pl|C) and em,n = Eqm(X)/q(X) <1 for all n>m. With
Tmon = (Pgm/qn)/€mn, one finds Dm — Dn equals D(p||rm,n)
+log 1/cm, so by the Cauchy sequence property, log 1/¢m n,
D(p||rm,n) and hence E}log gm(X)/ log gn(X)| converge to 0
as n,m — oo. Thus log¢. is a Cauchy sequence with limit
denoted log ¢* in L; (p). Further details are in [6].

REFERENCES

[1] A. R. Barron. The strong ergodic theorem for densities: Gener-
alized Shannon-McMillan-Breiman theorem. Ann. Probab., vol.
13, pp. 1292-1303, 1985.

[2] R. Bell and T. M. Cover. Competitive optimality of logarithmic
investment. Math. of Oper. Res. vol. 5, pp. 161-166, 1980.

[3] 1. Csiszédr. Sanov property, generalized I-projection and a con-
ditional limit theorem. Ann. Probab. vol. 12, pp. 768-793, 1984.

[4] J. Fritz. An information-theoretical proof of limit theorems for
reversible Markov processes. Trans. Sizth Prague Conf. on In-
form. Theory, Stat. Dec. Func., Rand. Proc. Czech. Acad. 1973.

[5] J. Kieffer. An almost sure convergence theorem for sequences
of random variables selected from log-convex sets. In Almost
everywhere convergence I, pp. 151-166, Academic Press, 1991.

[6] J. Q. Li. Estimation of Mixture Models. Yale Thesis, 1999.

[7] F. Topsoe. Information theoretical optimization techniques. Ky-
bernetika vol.15, pp. 8-27, 1979.

0-7803-5857-0/00/$10.00 ©2000 |EEE.

25

N




ISIT 2000, Sorrento, Italy, June 25-30,2000

The consistency of the BIC Markov order estimator

Imre Csiszér !

A. Rényi Insitute of Mathematics
Hung. Acad. Sci., P.O. Box 127
1364 Budapest, Hungary
e-mail: csiszar@math-inst.hu

Abstract — We show that the BIC estimator of
the order of a Markov chain (with finite alphabet)
gives the correct order, eventually almost surely as
the sample size goes to oo, thereby strengthening ear-
lier consistency results that assumed an apriori bound
on the order. A key tool is a strong typicality re-
sult for Markov sample paths. We also show that the
Bayesian or MDL estimator, of which the BIC estima-
tor is regarded as an approximation, fails to be con-
sistent for the uniformly distrubuted i.i.d. process.

I. MAIN RESULTS

Given a set of cardinatlity |A| < oo, denote by M the class of
those probability mesures on A which are Markov of order
at most k, with stationary transition probabilities. Set M =
Uz oM where Mg is the i.i.d. class.

One popular approach to model selection is the so-called
Bayesian Information Criterion (BIC). It suggests to estimate
the Markov order by

k —
LALGA-Y

1)

keic(z?) = afgkmin (— log nax P(zT)

if the observed sample is 7 = (z1,...,Zn).

Our principal result is A
Theorem 1 For any stationary ergodic Q € M, kpic(z])
equals ko = min{k: Q € M,}, eventually almost surely.

The hard part of the proof is to rule out “moderate over-
estimation” ksic(z?) € (k*,alogn), for suitable k* > ko and
a > 0. A key tool to this is
Theorem 2 Given a stationary ergodic @ € M, and 0 < 3 <
1/2, there exists o > 0 such that eventually almost surely, the
k-block types of xT, defined by

® n 1 . i
P(a} | 27) = aorrglie (0,n—kl:zi1} = al}|, of€A4*
satisfy for allk < alogn

|P(al | 21) - Qa])| S nPQaf), af €4t (2)

Theorem 2 permits us to restrict attention to “typical se-
quences” satisfying (2); for these, the number of possible k-
block types does not grow too fast as n — oo, and the method
of types leads to suitable probability bounds.

‘We also consider the Bayesian order estimator

I::KT(:I:;') = arg min{— log px — log KT (z7)} (3)
k

!Supported in part by a joint NSF-Hungarian Academy grant 92
and by the Hungarian National Foundation for Scientific Research,
Grant T26041.

2Supported in part by a joint NSF-Hungarian Academy grant
INT-9515485.
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which is also a minimum description length (MDL) estimator,
see [1]. Here p; is a prior probability assigned to the class My,
and KTy is the Krichevsky-Trofimov distribution of order k,
a Dirichlet mixture of measures in M. The expression mini-
mized in (1) is a good approximation to — log KT (z7) when
k is fixed, but substantially overestimates the latter when k
grows with n, a fact we use in the proof of Theorem 1 to rule
out “gross overestimation” fcmc(z’f) > alogn.
Theorem 3 The estimator (3) is not consistent for the
i.1.d. process with uniform distribution on A, if py de-
creases subezponentially as k — oo. Rather, in this case
kxr(z?) = 0o almost surely.

The proof depends on the fact that for large k it is likely
that no k-block appears more than once in z7, and then
KTi(a}) = 4],

II. DiscussioN

The key feature of our consistency result Theorem 1 is that
the minimization for k in eq. (1) is unrestricted. When a prior
bound £* on the true order is known, and the minimization is -
retricted to k < k*, consistency has been proved by Finesso
[2]. Kieffer [4] proved consistency without such restriction, for
a modified estimator with a larger penalty term; he also raised
the question whether the BIC estimator (1) was consistent.

Theorem 2 appears to be the first strong typicality result
for non-i.i.d. processes that admits block size growth of order*
log n; see, however, Flajolet et al. [3] for coin-tossing.

Bayesian inconsistency phenomena similar to Theorem 3
are well-known in Statistics though in less natural settings
than ours. Theorem 3 gives a natural example when in the
theorem about MDL consistency for almost every choice of
the parameter, see [1], “almost” is non-vacuous. The contrast
of Theorems 1 and 3 suggests a deficiency in the usual inter-
pretation of the BIC estimator as an approximation to the
Bayesian or MDL estimator.

We note that the (non-Bayesian) “normalized maximum
likelihood” version of MDL, see [1], is also inconsistent for the
uniformly distributed i.i.d. process.
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Abstract — Consider a pair of random variables
(X,Y) with distribution P. The probability rank func-
tion is defined so that G(z|y) = 1 for the most probable
outcome z conditional on Y =y, G(zly) = 2 for the sec-
ond most probable outcome, and so on, resolving ties
between elements with equal probabilities arbitrarily.
The function G was considered in {1] in the context
of finding the unknown outcome of a random experi-
ment by asking questions of the form ‘Is the outcome
equal to x?’ sequentially until the actual outcome is
determined. The primary focus in [1], and the sub-
sequent works [2], [3], was to find tight bounds on
the moments E[G(X|Y)?]. The present work is closely
related to these works but focuses more directly on
the large deviations properties of the probability rank
function. ’

I. RESULTS

The aim of this work is to determine the large deviation ex-
ponent of InG,

lim n~!'n Pla G(X™|Y™) > nl), (1)
n—»00

for a sequence of pairs of r.v.’s (X", Y™) under various as-
sumptions regarding their distribution. Special instances of
this problem correspond to finding the error exponent in
source and channel coding problems of information theory.
E.g., if we regard X™ as an input of length n to a noisy chan-
nel and Y™ as the channel output, Plln G(X"|Y") > nL} is
the probability of decoding error for a list decoder with list
size e"L. We begin by noting that the mean of In G is closely
related to the Shannon entropy.

Proposition 1 For (X,Y) a pair of jointly distributed ran-
dom variables,

—In(1+1n M) + H(X|Y) < E[ln G(X|Y)] < H(X[Y) (2)

where M is the mazimum over all y of the range of X condi-
tioned on'Y =y.

We study large-deviations of In G(X™|Y™) under the assump-
tion that the sequence of functions

#a(6) 2 2 W EIGX" V")) ®)

converges to a limit ¢(8). We let R,/ denote the range of ¢'.
Now, the Gértner-Ellis theorem [4, p.15] gives

Proposition 2 For any L€ R,
nliﬁlo n_ilnPlln G(X"IY") > nL] = ¢(8L) — oL(p’(oL) (4)

where 8, = inf{8 : ©'(6) = L}.

For the special case where (X™,Y™) is a pair of random vectors
with i.i.d components, we recall from [1] that for any § > 0

1+8
Y P, y)”“*”] 6)

This yields the source coding error exponent (with side infor-
mation Y™). The well-known source coding error exponent [5,
p.37) is obtained by omitting the side information term.

Another special case of interest is when X™ represents a
codeword from a block code with block length n and rate R.
Then, P(z") = e™® if 2™ is a codeword and 0 otherwise.
This distribution is called the code’s empirical distribution
and denoted @, below. The r.v. Y™ represents the channel
output when X™ is transmitted. We recall from [1] that for
620,

Jlim gn(6) =p(6) =In}

¢n(6) = 6R—n""Eo(6,Qn) +o(n) - (6)
where Ej is is Gallager’s function [6, p. 138] and o(n) is a
quantity that goes to zero as n goes to infinity. Proposition
2 now yields the well-known sphere-packing bound for list-
decoding.

In the case of L = 0, which corresponds to ordinary ML
decoding, Proposition 2 may not apply since 0 may not belong
in R,. In this case, Gartner-Ellis theorem yields only a lower-
bound.

Proposition 8 Let {(X",Y™")} be a sequence of input-output
pairs for a noisy channel such that {yn} converges to a limit
. Then,

liminf n~'In Plln G(X"[Y™) > 0] > —8o¢' (o)  (7)
n—oo

where 6o = inf{8 : ©(6) > 0} and ¢/, denotes right-derivative.

It can be shown that this bound is equivalent to the familiar
sphere-packing lower bound [6, p. 157], except it is formulated
in terms of code empirical distributions.
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‘We present a new approach to evaluating the efficiency of
information-divergence-type statistics for testing the goodness
of fit. Since the Pitman approach is too weak to detect suffi-
ciently sharply the differences in efficiency of these statistics,
the attention is focused on the Bahadur efficiency.

We consider the classical statistical model of goodness of fit
with independent data (X; : 1 € N) where, under a hypothesis
H, X; is distributed by p on an abstract space (X,.A) and,
under an alternative A, it is distributed by v # p. In addition
to p and v, we consider the standard empirical distribution
fn = (6x, ++++6x,)/n on (X, .A) and the infinite product
distributions

P=y",

Q=v" on (XN, AY).

We also consider partitions Pn = {An1,...,4nm.} C A
of X with m, 1 oo and the discrete stochastic my,-vectors
Pn = (Prj); @ = (an;) and P, = (Pn;) generated by these
partitions and the distributions p, v and fi,,. We are interested
in the statistics

T¢v"’- = D¢(5n7pn)
which are the ¢-divergences of Csiszar for convex ¢(t), ¢t > 0.
Particular attention is paid to the information divergence (ID)
statistic I(p,; p,) and the reversed ID statistic I(p,; P, ), and
to the classical Pearson statistic x*(Pp,;p,) and the reversed
Pearson (Neyman) statistic x*(p,; P,)-

Our results are formulated for nonatomic g and v, under
relatively milde restrictions on the partitions P,. These re-
strictions are fulfilled e.g. when p,; = 1/m,, the likelihood
ratios pn;j/gn; are bounded, and the partitions are nested in
the sense P; C P2 C ... and generate the o-algebra A. More-
over, we consider restrictions on m, of the type

lim 22 g (1)
n-300 n
for nondecreasing sequences ¢, > 0.
Our main result is the formula
D .
B(¢1/¢2) — g¢1( 1 (Vuu')) T S¢a,n (2)

992 (D, (Vi 1)) n—roo 84,0

for the Bahadur relative efficiency of the test rejecting H when
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I(p,; pn)D , (3)

cf. Problem 1.2.11 in [2]. In (3), s4,» > 0 is an appropriate
norming sequence leading to finite gg4(¢).

The definition (2) exploits the approach developed in [3]
and the formula (3) has been first proposed in [1]. Obviously,
(2) is applicable only when the limits in (2) and (3) exist, but
(2) also assumes that

by p,,, where

go(e) = lim (s¢_n [A inf
n—o0

Pn‘T¢,n25

lim Ep Ty, =0 and

n— 00

lim Ty n = Dy(v;u) Q-a.s. (4)
n—oo

and that m,, satisfies (1) with ¢, = s4,n lnn.

We have proved that (4) follows from (1) with ¢, = malnn
for Ty , equal to I(P,; p,) and x*(P,; p,,)- On the other hand,
the first of the conditions (4) cannot hold for T, equal to
I(p,;p,) and x*(p,;P,). We found that for their robusti-
fied versions I(p,;anp, + (1 — @) P,) and x*(p,;anp, +
(1 — as)p,) with a, | 0 both conditions (4) hold and the
original nonrobustified function gy(e) obtained from (3) re-
mains valid. The sequences s4,,, and the functions gg(e) for
the above mentioned statistics are presented in the Table, to-
gether with B(¢1/¢2)’s for the statistic T, in the line and Ty,
in the preceeding line. From [3] it is known that B(¢1/¢2) =0
for Ty, » = x*(P,;p,) and Ty, = I(P,;p,), i.e. that the ID
test is infinitely more Bahadur efficient then the classical Pear-
son test. The remaining results of the Table seem to be new.
They are negative for the reversed versions of the two formerly
mentioned statistics.

Ton 8¢,n 9¢(5) B(¢1/¢2)
X (Ppianp, + (1 —an)p,)[ mn | 1
I(p,;onp, + (1 —an)p,) [ ma | 1 1
(P pn) I 0
1(P,;P,) 1] e 0
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Abstract:  In this paper, we will present a construction method for
obtaining the decomposable codes that are originated from two-
dimensional array codes and of the form
| a, +x[~-| a, +x|al ++q, +x+y| . Many best known

codes can be constructed using this method.

I. INTRODUCTION

Codes constructed by combining shorter or simpler codes are
decomposable and can be decoded with reduced complexity. A
new class of decomposable codes presented in this paper is
created on the basis of two-dimensional array codes which
themselves are decomposable. The construction of the codes, in a
form of |a1 +x|-~[ a, +x| a, +-+a, +x+y|, embraces
many existing code structures. This is not just an extension of the
existing code construction, but also an opportunity for finding
more good codes or constructing the best known codes [3] in a
simpler way. Also, because of the use of array codes, their trellis
structure and efficient soft-decision decoding algorithm will play
a major role in the trellis decoding of the decomposable codes
created.

II. CODE CONSTRUCTION
A simple example of two-dimensional array codes is the product
code. A product code C is formed by a direct product of two

component codes C, = (1, ,k,,d,)and C, = (n,,k,,d,), so it is

a decomposable code. The generator matrix, G, of C is
represented in the form of a Kronecker product of generator
matrices of its component codes, G,and G, ,

i:G=G,®G, =(g"G,)  oG=6,96 =(s2a,)
)Gz =(g,-(j-)

is constructed by using the generator matrix

where G, = (gf‘j) ) The new decomposable code C’

G, G,

G'= G, G, )
G, - - G,
G

where G, and Gg are the generator matrixes of component
codes C,=(n,k,,d;)and Cj, =(n,,k,,d,)respectively.
Code C’ is therefore referred as a

la, +x|-~| a, +x,aI +-4a, +x+y|-construction code.

with a,,-,a, €C,xeC, and yeCy. This construction

can be viewed as the squaring construction [1] when m=2, x=0
and y=0, and the Turyn [2] or cubing cons truction [1] when

P. G. Farrell
Communication Research Centre
Lancaster University
Lancaster LA1 4YR, UK -
p.g.farrell@lancaster.ac.uk

m=2and y=0, i.e. in a form of]a+x|b+x|a+b+x|‘

To optimize a given code, we need to fix any two of the three
code parameters, length », dimension k& and minimum distance
d, and to improve the third one. In our case, for example, the
two component codes G, and G, are used to augment the
product code C in such a way where the length and minimum
distance of the decomposable code C’ are kept the same as code
C, and the dimension of the code C’ is greater than that of code
C. This means that n’=n, d’=d and k’>k. To this end, we set up
criteria for selecting G, and Gy, as follows:

The conditions for choosing G, and G, such that the

augmented code, C', has the same minimum distance as C, i.e.,
d' =d, are set up for the following cases:

d,>d/n,

1. When G, #0, G,=0.
AT {dw,zd/n2

2.When G, =0, Gz #0. dy>d

d,2d/n,
d,,z2d/n,

. #0, 5
3. When G, #0, G, #0 4> d
d

UAB 2

d/n,

where d_,andd_,;are the minimum distances of the

union codes C;, UC, and C, uC, UC,, respectively.

An efficient search algorithm for optimum decomposable
codes can be designed by setting the dimension-improving
target according to the table of the best known codes [3], and
letting C, be as small as possible. The use of small C, may

require large number of component codes, but reduce the
complexity of the search algorithm.
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Abstract — We investigate general properties
of rectangular codes. The class of rectangular
codes includes all linear, group, and many non-
group codes. We define a basis of a rectangular
code. This basis gives a universal description
of a rectangular code. The rectangular algebra
is defined. We show that all bases of a length-
2 rectangular code have the same cardinality.
Bounds on cardinality of a basis of a rectangular
code are given. We present a simple procedure
to get rectangular basis of a linear code from
its generator matrix.

A block code C is a set of words ¢ = (c1,...¢n)
of length n over an alphabet Q = {0,1,...,g —1}.
Given t € [1,n — 1], split every codeword c¢ into the
past p = (c1,...c:) and the future f = (ct41,...,¢n),
ie, c=pf. Aset C C Q" is called t-rectangular
if the following implication is true [1] (in [2] such a set
was called t-separable):

pfi, pf:, pi €C = pfaeC. (1)

A set C C Q" is called rectangular if it is ¢-
rectangular for each ¢.

All group, linear, and many famous nonlinear codes
are rectangular. Rectangular codes have the follow-
ing nice property. The minimal trellis of a rectangular
code is unique, biproper, and minimizes a number of
complexity measures including the Viterbi (or APP)
decoding complexity. In addition, the minimal code
trellis gives a universal compact representation of a
rectangular code. We present another universal com-
pact description of a rectangular code using a suggested
idea of rectangular basis.

Given an arbitrary block code G, a rectangular set
that includes G and has the minimum cardinality is
called a rectangular closure of G and is denoted by
[G]. A rectangular closure [G] is unique. We say that
a set G generates a rectangular set C (G is a gen-
erating set for C) if [G] = C. A set G is called
independent if for any g € G g ¢ [G\g]. An indepen-
dent set B generating a rectangular set C is called
a basis of the rectangular set C . It is known (3] how

1The work was supported by Russian Fundamental
Research Foundation (project No 99-01-00840) and by
Deutsche Forschungs Gemeinschaft.
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to get a basis of a rectangular set and how to get the
rectangular set from its basis.

1. Rectangular Algebra.  We define over the set
Q" of words a ternary partial operation of rectangu-
lar complement. The set of words with this operation
is called rectangular algebra. A rectangular code is a
rectangular subalgebra. This allows us to use results
of algebra. On the other hand the rectangular algebra
is an interesting example of universal algebra.

The following theorem gives an upper bound on car-
dinality of the rectangular closure of the set G.

Theorem 1 |[G]] < 2/6I-1.

An important question for any universal algebra is:
"Have bases of a closed set the same cardinality?”.

Conjecture 2 All bases of a rectangular code have the
same number of words.

We show that Conjecture 2 is true for codes of length
2.

2. Bounds on Cardinality of a Basis. From Theo-
rem 1 we get

Theorem 38 Cardinality of a basis B(C) of a binary
rectangular code C is bounded by

log, |Cl+1 < |B(O)} <|C].

4. Rectangular basis of a linear code. We present
a simple procedure to get rectangular basis of a linear
code from generator matrix of the code. This basis
can be used as follows. Assume that a nounlinear rect-
angular code C is a union of cosets of a linear code
L. Using the proposed procedure we obtain a basis
B(L) of the linear code L. A basis of a coset L +a
is B(L)+a. So, we can construct a generating set for
C as union of bases of the cosets of L.
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Abstract — We construct new cocyclic generalised
Hadamard matrices using semifield multiplication.
The matrices used are constructed from cocycles de-
fined over elementary abelian groups. These construc-
tions naturally yield generalised Hadamard codes
meeting the Plotkin bound.

I. INTRODUCTION

Non-binary Hadamard codes meeting the Plotkin bound can
be constructed using generalized Hadamard matrices [1].
In this paper we construct families of cocyclic generalized
Hadamard matrix codes meeting the Plotkin bound from cocy-
cles defined from finite fields GF(p™), commutative semifields
such as Dickson semifields and non-commutative semifields of
order 16.

II. CocYCLES

Let G be a finite group of order v and C be a finite abelian
group of order w where w divides v (w|v). A cocycle is a map-
ping ¥ : G x G — C, satisfying the following cocycle equation
$(g,h)b(gh,k) = (g, hk)$(h,k), for all g,h,k € G. This
implies ¥(g,1) = ¥(1,h) = ¥(1,1), for all g,h € G. We
only consider normalized cocycles, for which ¥(1,1) = 1.

A cocycle associated with the groups G and C is naturally
‘represented as a square matrix of order v X v, whose rows
and columns are indexed by the elements of the group G un-
der some fixed ordering and whose entry in position (g,h) is
(g, h). We call such matrices G-cocyclic matrices. We repre-
sent a G-cocyclic matrix as My = [¥(g, h)]g,nec- If the cocycle
4 is symmetric then My, is a symmetric matrix.

Definition 1 When w|v, the cocycle i : G x G = C is
orthogonal if the non-initial rows of My are uniformly dis-
- tributed over the elements of C. That is, for each g #1 € G,
|[{h € G : ¥(g,h) = a}| = v/w, for alla € C.

III. GENERALIZED HADAMARD MATRICES AND
RELATED CODES
A generalized Hadamard matrix GH(w, v/w) over a group
C is a v X v matrix with entries from the group C of order w,
w|v, such that the list of quotients h;; h;jl,l < j < v, contains
each element of C exactly v/w times. Let H” be a matrix with
entries h{; = hj”il, then the defining matrix equation over ZC
is
HH* = v, + (v/w)(D_ u)(Jo — L), (1)
ueC
where I,, and J, are the v X v identity matrix and matrix with
all entries 1, respectively. Generalized Hadamard matrices
can be used directly to construct codes meeting the Plotkin
bound. We have the following result.

1This work was supported by Australian Research Council Large
Grant #.A449701206

K. Horadam
Department of Mathematics,
RMIT University,

GPO Box 2476V, VIC. 3001.
Melbourne, Australia.
e-mail: horadam@rmit.edu.au

Theorem 1 [1, 2] Let ¥ : G x G — G be an orthogonal
cocycle, where G is the additive group of GF(p"). Let My be
a G-cocyclic matriz of order p™ x p" over G,

1. the rows of My without the first column form a (p" —
1,p",p" — 1) p"-ary code meeting the Plotkin bound.

2. the rows of the translates of a + My, a € G, of My, form a
(p",p*,p" — 1) p"-ary code meeting the Plotkin bound.

IV. ORTHOGONAL LINEARIZED PoLyNoMIAL (LP)
COCYCLIC MATRICES FROM SEMIFIELDS

Throughout this section let G be an elementary abelian group
of order p®. Here we construct classes of orthogonal co-
cyclic matrices using using linearized permutation polynomi-
als (LPP) over GF(p"). Let L(z) = Y.7_, liz” be a LPP over
GF(p"), then the linearized permutation cocycle (LP cocycle)
is given by ur(g,h) = L(g) - h, where - represents multipli-
cation in a semifield whose additive group is G. We have a
lemma. )

Lemma 1 Let (F,+,-) be a finite semifield such that G =
(F,+) = (GF("),+). If L(z) = Y14 Liz” is a LPP of
GF(p"), then the LP cocycle defined by pr(g,h) = L(g) - h, is
orthogonal.

The above construction with - as the field multiplication in
GF(p") accounts for all (symmetric and asymmetric) orthog-
onal cocycles for groups of order 4,8 and 9 [2].

The first order p® for which there exist semifields which
are not fields is 16. There are two such semifields, both non-
commutative. These two semifields with the above construc-
tion leads to new classes of G-cocyclic generalised Hadamard
matrices of order 16.

There is a class of finite commutative semifields called the
Dickson semifields, defined when p is odd and the prime-
power r is even. Let F be a two-dimensional vector space
over GF(p®), where p is odd and b > 1, so (F,+) = (Z,)*.
Let z be any non-square in GF(p®). Each field automor-
phism 6 of GF(p®) defines a multiplication - on F to be
(a,b)-(c,d) = (ac+2b%d®, bc+ad), which makes F a commuta-
tive semifield. The only field property which does not hold is
associativity of multiplication. But this implies that the rows
of the matrix M, for the field multiplication in GF(p?*®) can-
not be permuted to give the rows for the Dickson semifields,
and the corresponding Hadamard codes are distinct.
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New DbEC-TbED Codes Better Than the Gilbert-Varshamov Bound
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Abstract — A new class of DbEC-TbED codes over
GF(q) is constructed. For the cases of q=3,4, the new
codes are better than the Gilbert-Varshamov bound.

Let r(C) = n —log,|C| be the redundancy of a linear code
over GF(q), p(g,n,d) be min{r(D) | D is a g-ary code of
length n and minimum distance d}. It is well known that the
asymptotic Hamming bound p(g,n,d) > tlog,n holds as n —

"0, where t = [431]). The Gilbert- Varshamov bound admits

linear (g, n,d) codes which achieve the bound r(g,n,d) > (d—
2)log,n as n — oo.

In coding theory, an important problem is finding the
sequences of (q,n,d) codes, asymptotically exceeding the
Gilbert-Varshamov bound, i.e., ’

r(g,n,d) < (d - 2)log,n.

It is well-known that the single-byte error-correcting and
double-byte error-detecting (SbEC-DbED) codes, i.e., the
codes with minimum distances > 4, have been successfully
used in computer memory subsystems. We are interested in
designing some good DbEC codes and DbEC-TbED codes ,
such that the redundancies are less than Gilbert-Varshamov
bound, and as small as possible. In a previous paper [1], we
constructed a class of DbEC codes over GF(2), which have
the parameters: n = ¢™,r < 2m + [2] +1, m = 3,4,--.
Our constructions reduce the code redundancy of [2] by one
symbol.

In [2, Corollary 6], a class of DbEC-TbED codes were ob-
tained, which have the parameters:

— ql5(m—1)/6J ,

r<25m, m=4,6,8,---

Another class of DbEC-TbED codes were constructed in [2,
Theorem 5], which have the parameters:

5 m + 1
'"-=qm’ ( )+r ]+[ ]1 m=3v5177"'~

In this paper, we will construct a new class of DbEC-TbED
codes over GF(g) which have the parameters:

5(m+1 _
n=gn, r<{ SHRHR1415], when m=3,57,
7+1+[?]+r717 when :4’678,‘
It is clear that {|XZ=L| | m = 4,6,8,---} =

{3,4,5,7,9,10,12,14,---}, and it can be verified that the in-
tegers 6, 8, 11, 13, 16, 18, 21, 23, 26, 28, --- are not in
this set. Thus, we extend the well-known constructions for
m=6,8,16,18,---

Construction I: Let m > 4 and 1,4, 62,
sis of GF(¢™), when m is even; 1,4,62,---,8™ be a basis of
GF(¢™*'), when m is odd, respectively. Consider the se-
quence H ={f1, f2,---} of polynomials in Fy[z1,z2, -, Tm],
where,

+,6™! be a ba-

1This work was supported in part by the National Science Foun-
dation under Grant NCR-9804973.

(1) if mis odd, H = {1,z1,",&m,(z1 + 226 + --- +
zmé™ " 4+ 06"')q+ (21 4 226 + o 4 Td™ +

05™)1 s (@1 +22B+236%)7 T (ghms + Tk B+
o3BT +"“, (z1+z27+237% + 247y )’" SO (paost
Ty_2v + zau-1v? + xqt’rs)q3+q2+q+l}, where m < 3k and
m < 4l, and when i > m, let z; = 0;

(2) if m is even, H = {1,z1, ", Tm,(z1 + T26 + -+ +
P L U e T T S s R N T
228 + zaB7)T I L (zsk—2 + Tor—1f + zarB?)T TTH,
(@1 + 227 + 237 + 27®)T T L (a4 Tagy +
Ty 1y + :v4;73)"3+"2""‘+1}, where m < 3k and m < 4!, and
when ¢ > m, let z; = 0.

Let LS = FJ and let H = (fy,f2,--)T be a parity check
matrix, we have a code C over GF(q).

Theorem 1 The code C in Construction I has the parame-
ters:
n=4q¢", d>6,
< 12142, when m=5,7,9,-,
- 5"'+l+[ 1+ (%1, when m=6,8,10,---

For ¢ = 3 and 4, these codes are better than Gilbert-
Varshamov bound.

Construction II: Consider ¢ = 3. Let H' be the sequences
of all of the polynomials of degree < 2 in H. It is clear that

|H'| = 2.5(m+1), when m=3,5,7,---,
] 25m+1, when m=4,6,8,---.

Let H' be parity check matrices, we obtain a class of codes
over GF(3).

Theorem 2 The codes in Construction II have the parame-
ters:
n=3", d>6,
2.5(m + 1),
rs { 2.5m +1,

when m =3,5,7,---,

3,5,7
when m =4,6,8,---

Construction III: Consider ¢ = 4. Let H" be the sequences

..of all of the polynomials of degree < 3 in H and H" be parity
“check matrices, we obtain a class of codes over GF(4).

Theorem 3 The codes in Construction III have the parame-
ters:
n=4" d>6,

rS{ sm2+l +131

when m =3,5,7,---,
o142, 4

5,7
when m =4,6,8,---
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Abstract — The classes of convolutional codes over
finite Abelian groups which admit minimal encoders
or systematic encoders are first characterized and
then compared. '

I. INTRODUCTION

Codes over rings and groups have attracted much attention
in recent years for their potential use in the phase modula-
tion coding [1]. Here we study convolutional codes over finite
Abelian groups presenting necessary and sufficient conditions
under which they admit minimal or systematic encoders.

II. CONVOLUTIONAL CODES AND ENCODERS

Given a finite Abelian group V, Ly is the group of Laurent
sequences over V (sequences definitely equal to 0 in the past).
If V and W are finite Abelian groups, any element N(D) =

j:g N;D* € hom(W, V)[[D]] induces a homomorphism (shift
operator) N(D) : Lw — Ly by letting act D as the forward
translation. N(D) is called rational if there exists p(D) €
Z[D) such that p(D)N(D) € hom(W,V)[D]. Rational shift
operators are exactly those which admit a state realization
with finite state space [2].

A convolutional code (c.c. from now on) over V is any
subgroup C C Ly for which there exists another finite Abelian
group W and a rational and injective shift operator N(D) :
Lw — Ly such that C coincides with the image of N(D).
The shift operator N(D) is said to be an encoder for C. A
c.c. admits infinitely many encoders, but they all have, up to
isomorphism, the same domain W which will be denoted by
W(C) and called the encoding group of C [2].

Let C C Lv be a c.c and let C— (resp. C4+) be the subgroup
of C consisting of the sequences which are 0 at ¢ > 0 (resp.
t < 0). Define the input group of C as U(C) := {z € V
Jv € C+, v(0) = z}, and the state group of C as the quotient
group X(C) := C/(C- ®Cy). Let N(D) : Lw) — Lv be
an encoder for C. It can be shown [2] that W(C) and U(C)
have the same cardinality. Moreover, N(D) admits a state
space realization with minimal state space X (NN) whose size
represents the amount of memory needed to implement N (D)
on-line. It is a standard result that X(N) cannot be smaller
than X(C).

With no loss of generality we will assume in the sequel that
for any = € V there exists v € C such that v(0) = z.

IIT. MINIMAL AND SYSTEMATIC GROUP BEHAVIORS

We now introduce two important classes of c.c. A c.c.
C C Ly is said to be minimal if it admits an encoder (called
minimal) N(D) such that X(N) is isomorphic to X(C). A c.c.
C C Ly is said to be systematic if it admits an encoder (called

Sandro Zampieri
Dipartimento di Elettronica ed
Informatica
Universita di Padova
via Gradenigo, 6/a
1-35131 Padova, Italy
e-mail: zampiQdei.unipd.it

systematic) N(D) : Lw — Lv of the following type: V' can
be split as V = W @ V and there exists N(D) : Lw — Ly
such that N(D)w = (w, N(D)w).

In the field case it is well known that any c.c. is system-
atic and minimal. In the group case there are examples of
c.c. which are not minimal. On the other hand, it can be
shown that systematic encoders are-always minimal so that
a systematic c.c. is always minimal. The following theorem
provides a characterization of systematic c.c. which extends a
result given in [1].

Theorem 1 Let C C Lv be a c.c.. The following conditions
are equivalent.

1. C is systematic.
2. There exists a subgroup V of V such that V = U(C)®V.

Condition 2. can be checked in a very efficient way once
we have the c.c. represented as the image of an encoder.

The relation existing between minimal and systematic c.c.
is clarified by the following result. First we introduce a trans-
formation which can be performed on a code. Fix N € N and
consider the map PV : Ly — Lyn defined by PN (v)(t) :=
vpNtN+N—1]- C C Ly is acc, ¢l o= PN(C) CLynisa
c.c, too.

Theorem 2 Let C C Ly be a c.c.. The following conditions
are equivalent.

1. C is minimal.

2. There exists N € N such that CV is systematic.

In certain situations the classes of minimal and systematic
codes do coincide.

Theorem 3 Let C C Lv be a code and assume that W(C)
s @ Zn-free module for some integer n. Then, the following
conditions are equivalent

1. C is minimal.
2. C is systematic.
3. U(C) is Zn-free.

On the other hand, through computer search, we have
found a minimal c.c. with W(C) = Z4 ®Z2 and V = Z3,
which is not systematic.
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On the Design of Convolutional Codes over Block Fading Channels

Marco Chiani
CSITE, DEIS Univ. of Bologna
V.le Risorgimento, 2
1-40136 Bologna, Italy

e-mail: mchiani@deis.unibo.it

Abstract — A general methodology to analyze con-
volutional codes over block fading channels is pre-
sented. Starting from this approach some good gen-
erator polynomials for different block fading channels
are obtained.

I. METHODOLOGY AND ASSUMPTIONS

We assume a block fading channel [1, 2], where the fad-
ing level is constant over B encoded bits. The number of
blocks L is the available amount of diversity provided by the
channel. The achievable diversity per dimension depends on
the code-rate [1]. The codeword error probability (CEP) for
terminated-trellis convolutional codes over block fading chan-
nel is obtained from a suitably defined matrix A that take into
account the trellis structure and the interleaving function.
Let us consider, as in [3], the mxm matrix A(D) (where m is
the number of trellis states), whose elements are A;; = D" if
a transition from the state i to the state j exists and produces
an output with Hamming-weight A, and 0 otherwise. Assume
for the sake of simplicity a rate 1/n code, if the fading level
were constant along the codeword of N - n encoded bits, we
would observe that:

Obs. 1 The matrix A(D) = A" (D) has elements A,’»j
that take into account all the transitions from state ¢ to state
j with N input bits. Obs. 2 For zero tailing the element A%
is sufficient to obtain the code weight distribution.

For block fading channel matrix A can be generalized as
a combination of matrices A(D1, .., D,) with elements A;; =
D;” ...« DI with h; = 0,1, which means that the transition
from state i to j produces the output (hi,..., hn). A;; is equal
to 0 if no transition exists from 7 to j.

For uninterleaved convolutional codes over block fading
channel we have

L
A= H ANH(D;, . D) (1)
i=1

where N/L is the number of transitions per block. In the case

* of branch-interleaving, the expression for the matrix A is

- L N/L
A= [HA(Di,..,D,v)] , @)
i=1
For the bit-interleaved case the expression becomes
L/n B
A= [HA(D(i—l)n+1:-'7Din)] . (3)

i=1

The element A;; gives information about all sequences start-
ing from and ending in state 0; D, is related to the I — th
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fading level. So,
A —-1=T(Dy,Dy,.,Dy1) = Z..Zw(il..iL)-Di‘ -..-Di¥

1 ir
(4)
where T(Di, D, .., D) is the generalized transfer function.
Upper-bounding the complementary error function as
erfe/zt+y < erfey/z-e ¥ < e”@+Y) and averaging over
fading gives the bound on CEP:

— L
CEP< Z"Zw(““”) ‘ %(1 Y 1::17) ,I-! 1+1iﬂ
T TG
o N -
==Y ——_‘”(’i’ﬁ';“)( II4 ®

(i1,.ip )€l 1=1, I,;#0

where the sums in (5) are for (i1,..,i) # (0,..,0), 7 is the
average signal to noise ratio and I, is the set of (iy,..,41)
with & non zero elements. This bound can be also derived
from %(/iu — 1), which is half the generalized transfer func-
tion T(Ds,..,Dy), substituing 1 with 1; a term D! with

1- \/%; and the other L — 1 terms D} with 1—;—-‘,—;—7-

It is worth noting that the low degree terms in (4) give the
diversity order, a, achievable by a given coding scheme over
the block fading channel. Moreover, these allow an asymp-
totical evaluation of the average CEP. As these terms can be
directly derived from matrix A, a comparison among different
convolutional codes is possible in order to design good codes.
So we can find the best codes given L, the interleaving strat-
egy and the codeword length. To perform an efficient search
a suitable decomposition of A has been developed. As an ex-
ample, for a rate 1/2, 64 states code with bit interleaving and
N = 194, the optimum generator polynomials for L = 8 are
(127,155)s. An asymptotic gain of 0.3dB in terms of signal to
noise ratio with respect to the optimum generator polynomials
for AWGN has been verified by simulations. These generators
are optimum for any N larger than 40. Numerical results will
be presented at the conference.
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Abstract — In this paper, we concentrate on the
study of combining the optimality with respect to
unequal error protection and canonicity of generator
matrices for convolutional codes. The transformation
which can keep the optimality of generator matrices is
constructed, based on which a procedure for obtain-
ing a basic and optimal generator matrix with the
smallest external degree is also proposed. Moreover,
necessary and sufficient conditions for a canonical gen-
erator matrix whose separation vector is the greatest
among all canonical generator matrices are given. Fi-
nally, the existence of the greatest separation vector
among all canonical generator matrices is proved for
some convolutional codes.

In a previous paper [1], we showed that every convolutional
code has at least one optimal generator matrix with respect
to unequal error protection. A procedure for converting an
arbitrary optimal generator matrix to a basic [2] polynomial
generator matrix (PGM) without affecting its optimality was
also proposed. However, by a counter-example, we showed
that not every convolutional code can have an optimal gen-
erator matrix which is also canonical {2]. Since the external
degree [2] of a PGM corresponds to the number of memory

elements in direct-form realization of this PGM, to reduce the

hardware complexity, it is desirable to generate a basic and
optimal generator matrix of the smallest external degree.

To obtain the transformation between optimal generator
matrices, we first define an effectively lower-triangular matrix.

Definition 1 Let G(D) be a generator matriz of an (n,k)
convolutional code. Assume the components of the separation
vector [1] 8(G(D)) are nondecreasingly ordered and have a
distinct values, each with §; repetitions for all 1 < 1 < a. For
a k X k matriz T(D) over F(D), where F(D) is the rational
field over a field F, let t,, (D) be the entry in position (u,v)
of T(D) for all1 < u,v < k. T(D) is called effectively lower-
triangular with respect to G(D) if and only if

tuw(D)=0

for all Z;;; Bi<u< Z:=1 Bi,v> E:=: B, andl<i<a.

Based on effectively lower-triangular matrices, necessary and
sufficient conditions for the transformation between all opti-
mal and basic generator matrices are given as follows.

Theorem 1 Given an (n,k) convolutional code C, let G(D)
be an optimal and basic generator matriz of nondecreasing sep-
aration vector. For any k x k nonsingular matric T(D) over
F(D), T(D) - G(D) is optimal and basic if and only if T(D)

*This work was supported by the National Science Council of
the Republic of China under Grant NSC-88 -2213-E-007-081.

is unimodular and effectively lower-triangular with respect to
G(D).

Based on Theorem 1, a procedure for obtaining a basic and
optimal generator matrix which has the smallest external de-
gree is proposed.

In addition, some properties of canonical PGM’s for UEP
are discussed below. If there exists a canonical PGM of the
greatest separation vector, the corresponding necessary and
sufficient conditions are given in Theorem 2.

Theorem 2 Consider an (n,k) convolutional code C. Define
w(C) = {w(c(D)) :V c(D) € C} and C? = {c(D) :V ¢(D) €
C and w(c(D)) < p}. Without loss of generality, assume the
components of the separation vectors corresponding to the fol-
lowing generator matrices are nondecreasingly ordered. A gen-
erator matriz G(D) has the greatest separation vector among
all canonical generator matrices if and only if V p € w(C), for
any canonical generator matriz A(D) of C satisfying

(Cp) c (al(D))GQ(D)y v )ai(D))

we have

(C?) C (91(D),92(D), -, 9:(D))

where G(D) and A(D) have rows g,(D)’s and ai(D)’s for all
1 < i < k, respectively.

Although we have shown that every convolutional code has an
optimal matrix, however, the existence of a canonical PGM
whose separation vector is the greatest among all canonical
PGM’s is still doubtful. Instead of a general proof, in Theorem
3, we show the existence of a canonical PGM with the greatest
separation vector for the convolutional codes of k£ < 3.

Theorem 3 Let G(D) and G'(D) be canonical generator ma-
trices of an (n,k) convolutional code C with k < 3. If 8(G(D))
and 8(G' (D)) are not comparable, there exists another canon-
ical generator matriz G*(D) and two permutations ¢ and ¢'
of vector components such that

8(G*(D)) 2 ¢(s(G(D))) and 8(G™(D)) 2 ¢'(s(G"(D))).

Finally, following a similar proof, the result of Theorem 3 can
be directly extended to the convolutional codes whose optimal
generator matrix has distinct components in the separation
vector.
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Abstract — Performance bounds for maximum like-
lihood decoding of convolutional codes over memory-
less channels are commonly measured using the first
few terms of the series expansion of the transfer func-
tion T'(z,y). In this paper we present an efficient alge-
braic method to obtain this truncated series without
first computing the complete T(z,y).

I. THE PATH WEIGHT ENUMERATORS

Let S be the set of all paths of an 1/n-rate convolutional
code with constraint length K, that diverge from the all-zero
path at t = 0 and remerge into the all-zero path at some time
later. Let w; and wy be weight functions such that w; (o) and
wa (o) are the number of 1’s in the input and output sequence,
respectively, corresponding to a state sequence o € S. T(z,y)
is the generating series for the set S with respect to w; and
wo, that is, T(x,y) = Zaesxw‘(a)y“”l("). The number
of paths in S of Hamming weight d is the coefficient of y? in
T(1,y), and the total number of nonzero information bits in
all paths of Hamming weight d in S is the coefficient of y¢ in
9T(=,y) } .
8z =1

The first step to compute T'(z,y) is to generate the adja-
cent matrix A as follows. The (i,7)'" entry of A is either
[A)i; = 1G9 w200 where wi (i — j) and wa(i — j)
are the Hamming weights of the input and output strings on
the branch that connects the states ¢ and j, respectively, or
zero, if ¢ and j are not connected. All state sequences in &
have the following structure: The first symbol is 0, the sec-
ond is 1, the third is either 2 or 3, and so on, the second last
symbol is 252, and the last symbol is 0. Define a non-zero
path as a path which does not enter or leave the zero state.
Let T (z, y) be the generating series that enumerates non-zero
paths from the initial state 1 to the terminal state 2X~2 with
respect to w1 and wz. Thus

T(z,y) = [Aloa Ta(z,y) [Al2x-2 0. ey

Let A(0) be a matrix identical to its counterpart A, except
that the first row and the first column are set to zero. Then

Ti(z,y) = [T~ AO)7'], k- )

The (1,25~ 2)th entry of the k** power of A(0) is a bivari-
ate polynomial whose exponents are Hamming weights w; (o)
and wz(o ) of all non-zero paths originating in state 1 and
terminating in state 252, and the coefficients are the multi-
plicity of the weights. It is necessary to invert a 2%~ x 2K~!
symbolic matrix in order to find a closed form expression for
Ti(z,y). We propose next an iterative procedure for calculat-
ing T1(z,y), called state reduction algorithm, that discards,
at each step, all paths with Hamming weight higher than a
given order. We need the following definitions:

1This work was supported by CNPq under Grant 300987/96-0.

Definition 1: Two finite state machines (FSM) are said to be
equivalent if and only if their transfer functions are identical.
Definition 2: Two FSM are said to be equivalent of or-
der L, if and only if the series expansion of T'(z,y) and
{0T(1,y)/0x},_, of order L., and lower are the same for
the two FSM.

II. STATE REDUCTION ALGORITHM

The algorithm creates a sequence of adjacent matrices repre-
senting equivalent FSM of order L,, with one state less. It
should be observed that each non-zero path is formed by con-
catenating paths that start from state 1 and reach state 2%—2
for the first time some time later. Call the set of all such paths
S». For example, the path o = 124]124]1364 is the concate-
nation of 3 paths belonging to S. If T>(z, y) is the generating
series for the set Sz, we have:

T]((I), y) = Tz(.’l?,y)(]. - [A]QK-Q,I Tz(zl y))—l'

To calculate T>(z,y) we may form a sequence of equivalent
FSM where at each step we eliminate transitions from and
into the r** state. The 2X~! x 2X~! adjacent matrix for
this equivalent FSM, denoted by A(r), is calculated from the
adjacent matrix of the previous step A(s) (obtained from the
elimination of the s** state) as shown in the following lemma.
Lemma 1 Let R and C be sets of indexes I, I =1,-..,25"1
I # r, such that [A(s)];,» and [A(s)}., are different from zero,
respectively. The (i, 7)** entries of the matrix A(r) are:
[A()]ij + [A())ir (1 = [A(8))rr) T [A(S)]rg, f § € R, j €C;
0, if i=rj=1,..-,2K°1
0, if j=ri=1, -
[A(s)]ij, otherwise,

K-1.
‘12 )

where on the first row, [A(s)]: ; is due to parallel transitions,
and (1—[A(s)],) ! stands for the circulation loop on the rt*
state. The state reduction algorithm is summarized below:

e Set s = 0. Find A(0).

o Form the sequence of equivalent FSM A(r), r = 251~
1,---,2K"2-1,2%-241,... 2, according to Lemma 1.

* To(z,y) = [A(2)]1,0x -2

We propose next a modification of the algorithm which is sig-
nificant in practice. We will create a sequence of equivalent
FSM of order L, by performing the following operation: Af-
ter calculating [A(r))i;, ¢ € R,j € C, according Lemma 1, we
compute symbolically its series expansion with respect to the
variable y, up to order L,,. The algorithm has two new fea-
tures. First, we defined combinatorial identities to work with
equivalent FSM at the level of the adjacent matrix which is
convenient for symbolic computation. Second, no matter the
number of states, the entries of A(r) are bivariate polynomi-
als whose powers of y are of order at most L., resulting in
a truncated transfer function with considerable less storage
requirements.
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Two terminals, T1 and T2, wish to communicate over the
binary multiplying channel (BMC). To this end, they choose
sets X and Y, respectively, of (input) vectors in {0,1}". If
x€X and y€Y are fed to the BMC, it gives as output the
vector x-y, defined by (x-y): = z;y: for all i€{1,2,... ,n}.
Each terminal should be able to determine unambiguously the
vector transmitted by the other one, using its own transmit-
ted vector and the observed channel output. We call a pair
(X,Y) satisfying this requirement uniquely decodable, or UD
for short. Moreover, we call a UD pair (X,Y) symmetric if
X =Y. Note that unlike {1}, we do not allow feedback, that
is, encoding of a message does not depend on the output bits
observed so far.

If (X,Y) is a UD pair of length n, we define the rate pair
(R(X),R(Y)) = (:1log|X|,L1log|Y|). As usual, all loga-
rithms have base 2. A rate pair (z,y) will be called achievable
if for each € > 0, there exists a UD pair (X,Y) such that
R(X) >z — ¢ and R(Y) > y —e. The set of achievable rate
pairs will be called the zero-error capacity region of the BMC
without feedback, and it will be denoted by Z.

In {2], we construct UD codepairs from cosets of binary
linear codes with many information sets and obtain the
following theorem, in which h denotes the binary entropy
function.

Theorem

{(h(R2) + R1 — L,h(R1) + R2 ~1) | 1 <Ri,Ra <1} C Z.
For } < R < 1, the rate pair (h(R) + R — 1,h(R) + R — 1)
can be achieved with symmetric UD pairs.

Specializing the theorem to the case R=2/3, we find

Corollary The rate pair (log(3/2),log(3/2)) ~ (0.585, 0.585)
can be achieved with symmetric UD pairs.

The rate pair of the corollary yields the largest known sum
of the rates of pairs in Z, and clearly improves on the largest
known sum rate so far attained by a UD pair with rate
pair (0.548,0.548) [3]. It follows from [4, Thm. 3] that the
rate pair (log(3/2),log(3/2)) is the largest possible that can
be achieved with symmetric UD pairs. Stated differently,
asymptotically our construction yields cancellative families of
sets [4] [5, Sec. VII] of largest possible rate.

The results are represented graphically in Figure 1. The
rate pairs from the theorem lie on and below the curve N,
labelled by “new rate pairs”. As ({1},{0,1}) is a UD pair,
(0,1)€Z; similarly, (1,0)€Z. With a time sharing argument
[1, Sec. 8], it can be shown that Z is convex. Consequently,
all rate pairs on and below the tangents to N through (1,0)
and (0,1) are in Z. The relevant segments of these tangents

are drawn as well.

The line segment “upper bound” represents the upper bound
of [6], according to which z+y < 1.2181 for any (z,y) € Z. As
remarked by Erik Meeuwissen in [7, Stellling 2], combination
of this upper bound with Shannon’s lower bound [1, Sec. 13]
shows that the zero-error capacity region of the BMC without
feedback is strictly smaller than its e-error capacity region.

NEW RATE PAIRS —
UPPER BOUND -----
SHEARER'SRESULT o

08 |

02

0 ! L L L 3
0 0.2 04 06 08 1

Fig. 1: Graphical representation of the results. All points
below the solid curve or its two tangents are in Z.
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Abstract — The error exponent of the two-user
Poisson multiple-access channel under peak and av-
erage power constraints, but unlimited in bandwidth,
is considered. First, a random coding lower bound
on the error exponent is obtained, and an extension
of Wyner’s single-user codes [1] is shown to be expo-
nentially optimum for this case as well. Second, the
sphere packing bounding technique suggested in [2] is
generalized to the case at hand and an upper bound
on the error exponent, which coincides with the lower
bound, is derived.

The model studied here assumes two independent users
that generate the inputs A, (¢) , 1 =1,2, 0 <t < oo, which
determine the rates of two corresponding doubly stochastic
Poisson processes di(t). The observation is

2
v(t) =) di(t)+ D(t) ,

i=1

which is also a Poisson process with instantaneous rate Ao +
E?ﬂ Am;(t). The dark current represented by D(t) is a ho-
mogeneous Poisson process of rate Ag. It is further assumed
that the waveforms are subject to peak and average power
constraints - i.e. 0 < Am,(t) <A, 1T fOT Am; (t)dt < giA..
Using a DMC decomposition for our continouos-time model
the two-user capacity region of [3] is obtained. Furthermore,
applying the rate-splitting technique of [4] to our discrete time
model we conclude that in the non band limited case rate-
splitting extends to the continuous-time Poisson channel.
Next assuming maximum-likelihood decoding, a lower
bound on the error exponent is computed via the random
coding error exponent of this DMC decomposition. The ex-
ponent consists of two terms; the successive decoding and joint
decoding exponents defined respectively by (s = Ao/A)

s+aq+q— (1 —q2)s[l + 70q:)' ™

—g2(1+ s)[1 + @] (1

Eu(p,q,q2) =

with
ro=(1+1/s)T% =1 , 7 =[1+1/(s+1)]7 -1
and

ElZ(P,Ql,QZ) =
.
s+q+g— |[(1—q)(1—qz)sT+

. 14p
D i
+(@ + g2 —2¢1g2)(1 + 8)T+° + quq2(2 + 5) T2 (2)

An extension of the code construction of [1, part I} to the
case at hand is presented wherein a two-user code with non-
equal (q1 < q2) average-power cnstraint is constructed. This
is acomplished by constructing first a (g2, M1 + M2, T) Wyner
code and then modifying a (g2, M1,T) subcode to conform
with the g; constraint. The resulting code exhibits the statis-
tical properties of a two-user “random-code” hence the corre-
sponding upper bounds on the successive decoding and joint
decoding error probabilities are shown to yield the exponents
(1) and (2).

We extend the approach outlined in [2] to the two-user case
thereby obtaining a sphere-packing lower bound on the error
probability. Specifically, we associate a “volume” with the
set of all sequences representing a realization of n arrivals on
[0,T]. Given a specific realization of n arrivals, each hypothe-
sis of transmitted two-user message determines a configuration
triple (n1,n2,ng) consisting of the number of photon arrivals
on the time slot where only one of the users is active, both of
them are active and none of them is active, respectively. Now,
each such configuration is also associated with a correspond-
ing volume. Using these definitions we derive a lower bound
on the error probability.

We prove that in the non band limited regime binary sig-
naling incurrs but a negligible loss in the error probability.
Furthermore, it is shown that equi-energy signaling for each
of the users is optimal from the error probability aspect. These
conclusions lead to a sphere-packing exponent which coincides
with the random coding lower bound.

Using similar arguments as in [1, part II] we show that the
straight line bound is tight for rates below the cutoff rate.

Consequently, the two-user Poisson MAC joins its single-
user partner as one of very few for which the reliability func-
tion is known.
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Abstract — We consider uncoordinated multiple-
access. Here, a number of transmitter-receiver pairs
operate independently over a common channel and re-
gard the transmissions of the remaining users as ran-
dom noise. It is shown, that for the uncoordinated
binary adder channel, the capacity is upper bounded
by 1/1n2 bits/transmission and does not grow loga-
rithmically with the number of users as it does in the
coordinated case. An asymptotic lower bound for the
capacity is given. Further examples of uncoordinated
channels are studied.

I. INTRODUCTION
Here, we are interested in uncoordinated multiple-access. Each
transmitter has a dedicated receiver, that only decodes the
messages intended for him and regards the remaining trans-
missions as random noise (single-user detection).
The following approach to uncoordinated multiple-access
has been introduced by Cohen, et al. [2]: The individual

transmissions are treated as identical single-user channels with-

identical outputs. The activity of the other users stimulates
channel transitions. As a result, transition probabilities are
functions of the input distribution.

The (total) capacity of an uncoordinated multiple-access
channel is defined by

C\mcoord‘ =T. [I;I(?S( (H(Y) - H(YlX:)) . (1)

The maximum is taken over the input distribution (which is
common to all users).

IT. BINARY ADDER CHANNEL

The binary adder multiple-access channel accepts binary
input z; € {0,1} from each of T transmitters. The channel
output y € {0,...,T} is the algebraic sum of the inputs,
y=T1+T2+ - +2IT.

For the coordinated binary adder multiple-access channel,
Chang and Wolf [1] found that the capacity is achieved by
P(X; = 0) = P(X; = 1) = 1. It increases with the logarithm
of T.

Figure 1 shows one of the equivalent single-user channels for
the binary adder channel. The input probabilities are P(X =
l)=pand P(X =0)=1-p.

We can show, that the mutual information of the single-
user channels can be written as

T-1
1X;y) =3 (")pa-nt
i=0
O R PC)

1-p 0 = * 0
P 1 1

2

T

Fig. 1: Binary adder channel as seen by an individual transmitter-
receiver pair

It can then be shown:

Theorem 1 The capacity of the wuncoordinated T user
multiple-access binary adder channel is upper bounded by C <
5 bits/transmission.

The capacity does not grow with the number of users as it
does in the coordinated case.

Theorem 2 AsT — oo, for the capacity of the uncoordinated
T-user multiple-access binary adder channel, it holds Cr o0 >
.8371 bits/transmission.

III. FURTHER CHANNELS

In addition the uncoordinated XOR channel and an unco-
ordinated continous-time channel are studied.
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Abstract —  The multiple-access relay channel
(MARC) is introduced and capacity outer and inner
bounds for it are derived.

I. INTRODUCTION

The spectral efficiency of mobile radio networks can be im-
proved by allowing each mobile station to act as a relay for
one other mobile station. One can expect further performance
improvement if each relay aids not just a single mobile sta-
tion, but many simultaneously. We attempt to quantify this
improvement by introducing the multiple-access relay chan-
nel (MARC) and deriving capacity results for it. Most of the
discussion is restricted to the white Gaussian MARC.

II. MoODEL

A white Gaussian MARC is a K + 2 terminal channel with
K + 1 inputs X1, X3,..., Xk, Xg and two outputs Yp and
Yr such that

K K
Yp = (ZXI:) +Xr+2Zp, Yr= (Zxk> +Zr, (1)

k=1 k=1

where Zp and Zg are zero-mean Gaussian random variables
with variances Np and Npg, respectively. The terminal trans-
mitting Xx sends a By bit message to the destination termi-
nal receiving Yp, & = 1,..., K. A relay terminal observes
Yr and transmits Xg. There are block energy constraints on
the N transmissions: E:/:l E| Xen|?]/N < Pi, k=1,...,K,
and Z:]:IE[IXRnIz]/N < Pgr. The capacity region RMARG
is the closure of the set of rate-tuples (Ri,...,Rk), where
Ry = Bi/N bits per use, at which the destination terminal
can decode the K rnessages with arbitrarily small positive er-
ror probability.

ITT. AN OUTER BounDp
One can derive the following outer bound to Rmarc by fol-
lowing similar steps as in the proof of Theorem 4 in [1]. This

outer bound applies to both discrete memoryless and white
Gaussian MARCs. We write X(sy = {Xk : k € S} for aset S.

Theorem 1 Rmarc s contained within the conver hull of
the set of rate-tuples (R1,..., Rk) satisfying
0< Y 4es Br < min [I(X(sy; YrYD| X (sc) XR),

2
I(X(S)XR;YD|X(SC))] > @)

where S is any subset of {1,2,...,K}, S is the complement
of $in{1,2,...,K}, and P(z1,72,...,2K,TR) factors as

K
I: P(:Bk):l - P(zrl|z1,...,zK). (3)
k=1

IThis work was performed while this author was with Endora
Tech AG, Hirschgasslein 40, 4051 Basel, Switzerland.

IV. INFORMATION RATES
We extend the coding technique of {1, Sec. IV]. Consider
the independent, zero mean, unit variance, Gaussian random
variables Vi and Wi, k=1,..., K, and set

Xe o= VP (VmWV A VImaWh),
Xr = \/P;'Zle\/ﬁ—kvb

where 0 < ax < 1, B > 0 and E,’;l Br = 1. Terminal k ran-
domly generates a certain number 2" Fxe of codewords v, (%)
of length N by using Py, in the usual memoryless fashion.
For each v, (1), terminal k generates 2V codewords w, by
using Pw, and forms

z, (i) = VP - (Voru, () + V1 — i wy).

Each z, () is then associated with a v, (5), where j may not be
i, by using the random partitioning technique of {1, p. 575].

The transmission is in blocks of length N. Terminal k
chooses that v, (z) associated with the z, of the previous block
and lets the current block’s message choose one of the 2/VRx
z,(3). The relay terminal is assumed to have decoded all z, of
the previous block and hence knows the v, (). He transmits
zp=VPr- Zle Bk v, (i). The resulting information rates
suggest that the rate-tuple (Ry,..., Rk) is approachable if,
forall SC {1,...,K},

0< Y es Re < min [I(X(sy; Yr| X (seyViqa, .. k1)
I(X(5)Vis): Yp| X (s0)Vise))] -

The region of (5) can enlarge the basic K-user multiple-access
capacity region, and for K = 1 it is the samec region as that
in [1]. However, (5) is generally smaller than the anticipated

0< Y cs Be <min [I(X(s); Yr| X 50y XR),

6
(X5 Xr Yol X(s0))], )

whose only difference to (2) is that Yp is missing in the first
information inside the square brackets. Note that the same
probability distribution (3) is used for (2), (5) and (6).

As a simple example, consider the case where the relay
aids terminal k = 1 only, i.e., 31 = 1. We can then set ax =0
for k = 2,...,K and can achieve the region (6). However,
the probability distribution P(z;,z2,...,zk,zr) factors as
[HkK:1 P(zk)] - P(zg|z1) rather than as in (3).

It is unclear whether the region of (6) is achievable with (3).
In any case, we show that the region of (6) differs from that
of (2) for any sum-of-rates by at most a factor of 1 + Nr/Np
in terms of signal-to-noise ratio. This factor is at most 2 for
the usual case where Np < Np. For K = 1 this gives a simple
outer bound to any eventual rate increase over (6).
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Abstract — We investigate the task of compressing an image
by using different probability models for compressing different
regions of the image. We introduce a class of probability models
for images, the k-rectangular tilings of an image, that is formed
by partitioning the image into & rectangular regions and gener-
ating the coefficients within each region by using a probability
model selected from a finite class of N probability models. For
an image of size n x n, we give a sequential probability assign-
ment algorithm that codes the image with a code length which is
within O(k log % ) of the code length produced by the best prob-
ability model in the class. The algorithm has a computational
complexity of O(Nn®). An interesting subclass of the class of k-
rectangular tilings is the class of tilings using rectangles whose
widths are powers of two. This class is far more flexible than
quadtrees and yet has a sequential probability assignment algo-
rithm that produces a code length that is within O(k log %)
of the best model in the class with a computational complexity
of O(Nn?log n) (similar to the computational complexity of se-
quential probability assignment using quadtrees).

1. INTRODUCTION

Consider the task of compressing a wavelet subband comprising
n x n wavelet coefficients that have been quantized using a scalar
quantizer. For natural images, it is well known that the wavelet co-
efficients are small in smooth areas and large in the neighbourhood
of edges. Because of that, we would like to use different probability
models for coding different parts of the subband in order to obtain
good compression. We will restrict ourselves to a finite number N of
different probability models to choose from.

We introduce a class of probability models formed by partitioning
the image into k rectangular regions and generating the coefficients

within each region by using a probability model from the finite class’

of N probability models. We call the class of probability models
that is generated in this way the class of k-rectangular tilings of the
image. Our algorithm aims to compress as well as the best model in
this class.

IT. RELATED WORK

The class of k-rectangular tilings can be considered as a natural
extension to two dimensions of the class of piecewise-identically-
distributed source for sequences studied in information theory [6, 4].
Similar methods have also been studied in computational learning
theory [2, 5, 1]. In fact, the method described in this abstract is an
extension of the specialist method in [1] to two dimensions.

III. MAIN RESULTS

In this paper, we provide a sequential probability assignment
algorithm that codes the image with a code length that is within

This work was supported in part by the National University of Singapore
Academic Research Fund grant RP3992710.

O(klog &) bits of the code length produced by the best model in
the class of k-rectangular tilings of the image, where k does not need
to be known in advance. The computational complexity of the al-
gorithm is O(Nn®). If we restrict the class of probability models
to those generated using rectangular partitions of D discrete widths,
the computational complexity can be improved to O(Nn?D). This
means that we can have a fast algorithm of computational complex-
ity O(Nn*W) for a probability assignment that is competitive with
the best assignment provided by the class of k-rectangular tilings us-
ing rectangles of widths less than W. Another interesting class of
models under the restriction to D discrete widths is the class of k-
rectangular tilings with rectangles whose widths are powers of two.
Restriction of the probability models to this class allows us to have an
algorithm with a computational complexity of O(Nn®logn). This
class is similar to the class of quadtrees but is more powerful since
only one dimension is restricted to the log, n discrete sizes and arbi-
trary shifts are allowed.

Experiments on compressing wavelet transform of images re-
ported elsewhere [3] show that the method is practically effective.

IV. OPEN PROBLEM

The method described in this abstract is a sequential probability
assignment method. We do not know how to obtain efficient two
stage coding methods with good bounds on the redundancy for the
class of k-rectangular tilings of an image. Such forward adaptation
methods may allow the use of sophisticated quantization methods in
conjunction with this class of models.
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Abstract — In variable-length coding, the probabil-
ity of codeword length per source letter being above
(resp. below) a prescribed threshold is called the
overflow (resp. the underflow) probability. In this
study, we show that the infimum achievable threshold
given the overflow probability exponent r always coin-
cides with the infimum achievable fixed-length coding
rate given the error exponent r, without any assump-
tions on the source. In the case of underflow prob-
ability, we also show the similar results. From these
results, we can utilize various theorems and results
on the fixed-length coding established by Han for the
analysis of overflow and underflow probabilities.

I. GENERAL SOURCES

Let us define a general source as an infinite sequence X =
{xm = (XM, X8}, of n-dimensional random vari-
ables X™ where each component random variable X.-(") 1<
i < n) takes values in a countably infinite set X which is called
the source alphabet. It should be noted here that each com-
ponent of X™ may change depending on block length n. This
implies that the sequence X is quite general in the sense that
it may not satisfy even the consistency condition as usual pro-
cesses. The class of sources thus defined covers a very wide
range of sources including all nonstationary and/or nonergodic
sources.

I1. OVERFLOW AND UNDERFLOW PROBABILITIES
Let on : &A™ = U™, o : U* = X" be a prefix variable-
length encoder (a one-to-one mapping) and the decoder (the
inverse mapping of the encoder), respectively, where Y =
{1,2,---,K} is called the code alphabet and U* is the set of
all (non-null) finite-length strings from U. Then, let us define
the overflow probability of the prefix variable-length encoder
¢y, with threshold R by

nlen, ) = Pr{ 21 (on(x™) > R},
where [(u) denotes the length of u € U*. We also define the
underflow probability of the prefix variable-length encoder ¢,
with threshold R by
- v 1 v n
éi(en B = Pr{1(or(x) < R}.

For unifilar finite-state sources, Merhav [1] has shown that
the optimal exponential decay rate of the overflow probability
is equal to the optimal error exponent for fixed length coding,

and this optimal decay rate can be universally achieved by
using Lempel-Ziv code.

10. Uchida is now with the Dept. of Network Engineering, Kana-
gawa Institute of Technology, Atsugi, Kanagawa, 243-0292 Japan.

III. MAIN RESULTS
Definition 1 : R is called an r-achievable overflow threskold
if there exists a prefix variable-length encoder ¢}, such that

1 1
liminf ~ log ———— > r.
e 7 Ogc..(tp)’.,R) =T

Moreover, we define the infimum r-achievable overflow thresh-
old by
Le(r|X) = inf{R | R is an r-achievable overflow threshold}.

Theorem 1 : For any general source X with countably infi-
nite alphabet X and all r > 0, we have

Le(r|X) = Re(r|X),
where R.(r|X) is the infimum r-achievable fized-length cod-
ing rate [2], and it has been shown by Han [2] that
R.(r|X) = supg,o{R—o(R)|o(R)<r}, where o(R) =

liminf, o & log

n

1
pr{;{-log-,,x—nlmﬂznT'
Definition 2 : R is called an r-achievable underflow thresh-
old if there exists a prefix variable-length encoder ¢, such
that

lim sup 1 log ! <r

nooo N €n(pu,R) T

Moreover, we define the infimum r-achievable underflow
threshold by

L:(r|X) = inf{R | R is an r-achievable underflow threshold}.

Theorem 2 : For any general source X with countably infi-
nite alphabet X and all r > 0, we have

Le(r|X) = R2(r|X),

where R;(r|X) is the infimum r-achievable fized-length coding
rate (2], and it has been shown by Han [2] that R}(r|X) =
inf{h >0 |infRZO {a‘(R) +[R~0"(R)~ h]+} < r} , where

" (R) = limn_o +lo 1 , and [z]t =
(R) —oo ;7 108 Pr{% log F}‘;l(_x“TSaT 2]
max(z,0).

Remark : In [2], Han has shown examples of the computa-
tion for R.(r|X) and R(r|X) for many kinds of sources X.
These examples include countably infinite alphabet cases that
can not be treated by the traditional method of types. From
Theorems 1 and 2, we can use all of these results to derive the
values of L.(r|X) and L;(r|X).
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Minimum Conditional Entropy Context Quantization
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Abstract — We consider the problem of finding the
quantizer Q that quantizes the K-dimensional causal
context C; = (Xi—¢;, Xi-tg,-..,Xi-t,) of a source sym-
bol X; into one of M conditioning states such that the
conditional entropy H(X;|Q(C;)) is minimized. The
resulting minimum conditional entropy context quan-
tizer can be used for sequential coding of the sequence
X0, X1, X2,.. .0

A key problem in sequential source coding of a discrete
random sequence Xo, X1, X2, is modeling the underlying
conditional distribution of the source P(X;|X*"!), Because
of model estimation considerations, it is not possible to di-
rectly use all of X*~! as the model’s context. Many practical
source coders choose a priori a model with fixed complexity,
based on domain knowledge such as correlation structure and
typical data length, and estimate only the model parameters.
To avoid context dilution problem, we quantize the modeling
context into a relatively small number of conditioning states,
and estimate P(X;|Q(C;)) instead, where Q is a context quan-
tizer. This approach has produced some of the best perform-
ing signal compression algorithms such as CALIC and JPEG
2000, despite the fact that they are not strictly universal. A
pivotal issue for these source coders, which impacts their rate-
distortion performance, is the design of the context quantizer
Q. The problem is one of optimal vector quantization design
with respect to the Kullback-Leibler distance.

Let Y be a discrete random variable, and let C be a jointly
distributed random vector, possibly real. Given a positive in-
teger M, we wish to find the quantizer @ : C — {1,2,..., M}
such that H(Y|Q(C)) is minimized. Clearly, H(Y|Q(C)) >
H(Y|C) by the convexity of H. However, we wish to make
H(Y|Q(C)) as close to H(Y|C) as possible. Equivalently, we
wish to minimize the non-negative “distortion” of Q

D(Q) H(Y|Q(C)) - H(Y|C)

/dP(c)D(PYIC=CHPYIQ(C)=Q(C))7 (1)

which is the average, over all context vectors c, of the
Kullback-Leibler distances between the probability mass
functions (pmfs) Pyic(-Jc) and their “reproduction” pmfs
Py (1Q(e))-

Let Bm(y) = Py(q(c)(y|m) denote the mth reproduction
pmf. Then an optimal @ must map almost all context vectors
c to the conditioning state m that minimizes the Kullback-
Leibler distance D(Py|c=c||Om), i-e.,

Q(c) = arg min D(Py|c=c||Bm)- 2
The quantization regions A, = {c : Q(¢) = m}, m =
1,...,M, of a minimum conditional entropy context quan-

tizer are generally quite complex in shape, and may not even

1Dept. of Computer Science, Univ. of Western Ontario, London,
Ontario, Canada N6A 5B7, wu@csd.uwo.ca.

2Microsoft Research, One Microsoft Way, Redmond, WA 98005,
USA, pachou@microsoft.com.

3Dept. of Computer Science, Harbin Institute of Technology,
Harbin, China, xue@csd.uwo.ca.

Chou? Xiaohui Xue®

be convex or connected. However, their associated sets of
pmfs By, = {Py|c(-|c) : ¢ € A} are simple convex sets in
the probability simplex for Y, owing to the above necessary
condition for optimal Q. Let Bm(y) = P(ylC € An) be the
conditional distribution of Y given C € A... Then by (2), for
each ¢ € Bm, the Kullback-Leibler distance from Py c(ylc)
to Bm(y) must be less than (or equal to) the Kullback-Leibler
distance to B, (y), m' # m. Hence

1 1
z,,: P(yle) log B(®) < Zy: P(y|c) 105 B ()’ (3)

for all m' # m. In other words, if ¢ € B, then P(y|c) lies in
an intersection of halfspaces.

If Y is a binary random variable, then its probability sim-
plex is one-dimensional. In this case, the quantization regions
B, are simple intervals. If the random variable Z is defined as
Py |c(1]|C) (the posterior probability that ¥ = 1 as a function
of C), then the conditional entropy H(Y|Q(C)) of the optimal
context quantizer can be expressed

K .
H(Y|Q(C) =Y P{Z € [gm-1,4m)}H(Y|Z € [gm-1,0m))

m=1

(4)
for some set of thresholds {gm}. Therefore, the optimal con-
text quantizer can be found by searching over {gm}. This is
a scalar quantization problem, which can be solved exactly
using dynamic programming, regardless of the dimensionality
of the context space. Once the scalar problem is solved, the
optimal context quantizer cells A,, are given by

Am = {c: Pyic(1]c) € [gm-1,9m)}- (5)

In particular, the boundaries between these cells are deter-
mined by those vectors ¢ for which the posterior probability
Py |c(1]c) is a constant: For example, Py|c(l|c) = gn for ¢
along the boundary between A, and Ap,41. Equivalently, A,
can be expressed in terms of the likelihood ratio

_ Por(ell) _ Pv(0) Pyic(llc) (©)
Poy(cl0)  Py(1)1- Pyic(lfe)’

If both Pgjy(c|0) and Pgy(c|l) are d-dimensional Gaus-
sians, then optimal context quantizer cells are bounded by
d-dimensional quadratic surfaces.

The significance of this research is in that it offers a con-
structive means of designing optimal source codes for mini-
mum code length via high-order context modeling. The prob-
lem of controlling model cost in high-order context modeling
is addressed by designing optimal context quantizer, which
collapses high-order contexts into any given number of coding
states in a way to minimize the actual code length. Once
the context quantizer @ is designed, on-line estimation of
P(-|Q(C)) by count statistics and adaptive entropy coding
can be done very efficiently, much faster than by context tree
methods. . We observe that our techniques often outperform
the universal source codes of proven optimality by appreciable
margins on real data in image, video, and audio compression.

L(c)
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On the variance and the probability of length overflow
of lossless codes
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Abstract — In this paper, we show the probability of
lenfth overflow of several codes by using the variance
the asymptotic normality of the codelength.

I. INTRODUCTION
Lossless source coding schemes are examined under several
criterions. The most representative criterion is redundancy.
Recently, Merhav[1] proposed the probability of length over-
flow.

In this paper we redefine the probability of length overflow.
We consider a finite alphabet source A = {1:0 << k—1}.
Let 2" = z17273 -+ zn € X" denotes a source sequence. And
let p(z™) denotes the probability distribution of a source. Let
L(-) be a codelength and €, be a function of n.

bDeﬁnition 1.1 The probability of length overflow is defined
Y
Pr{L(z") (1)

We shall evaluate a code by using the probability of length
overflow instead of the expected codelength.

Next we define the two quantities, that have very important
role in this paper. First we generallze the minimal coding
variance, which is inherent value of a source, proposed by
Kontoyiannis[2].

> €n}.

Definition 1. 2 The rth moment of self-information is de-
fined by
"}

FEspecially, the 2nd moment of self-information coincides with
the minimal coding variance.

M(X) = lim E [{—-:;logp(z") - E[—%logp(X

- 00

Second we define the moment of codelength.

Definition 1.3 Let L.(z") denotes the codelength for se-
quence z” when we use a code ¢c. Then the rth moment of
a code ¢ is denoted by

o= (L sbren] o

FEspecially, when r = 2 we call this the variance of codelength
of a code c.

I1I. THE PROBABILITY OF LENGTH OVERFLOW

We show the probability of length overflow of a code c. Let
Lc(z™) denote the codelength of a code ¢ for ™.

Lemma II. 1 If the codelength of a code ¢ satisfies asymp-
totic normality with respect to a source, the probability of
length overflow of a code ¢ is given by

im Pr{L.(z") > €.}

0o 2
1
z: 2w -

—E[L (2" . .
-‘-"——[\/_%I—)], 02 is the variance of a code c.
nogz

1This work was supported by in Cﬁart of Waseda University under
Grant 99A-551 for Special Research Projects.

(3)

where, Z} =

Toshiyasu MATSUSHIMA
Waseda University
Shinjuku-ku, Tokyo, Japan.

Shigeichi HIRASAWA
Waseda University
Shinjuku-ku, Tokyo, Japan.

When a source distribution is known, it is well known that
a codelength —logp(z™) minimize the e‘(pected codelength.

We call this code Shannon code and let 0% be the variance of
Shannon code. Obviously, the variance of §hannon codelength
coincides with 2nd moment of self-information. Here we define
a condition of a source as follows.

Condition I1.1 The codelength of Shannon code with re-
spect to a source satisfies the asymptotic normality.

Then we have the following lemma.
Lemma II. 2 Under Conditionll. 1,

/nM(X)?, then we have

lim Pr{-

if ime, > nH(X) +

log p(z") > en} = 0. (4)

III. THE PROBABILITY OF LENGTH OVERFLOW OF
BAYES CODE

We consider a parameterized source distribution. Let 8 € ©
is a k-dimensional parameter of a source. If ¢ is unknown,
it is known that Bayes code minimize the redundancy with
respect to Bayes cnterlon The codmg probablllty of Bayes

code is given by m( feeo p(z"]|0)p(6)d0, where p(f) is a
prior distribution of 9 We define a condition of a source.

Condition III. 1 The codelength of Bayes code with respect
to a source satisfies the asymptotic normality.

Then we have the following theorem.

Theorem I1II.1 Let the variance of Bayes code denoted by
0%, we have

k k

2 QY
M(X)? + = > o} > M(X)? + = - ZkM(X)?

n

)

From above thcorem, we have the following lemma.

Lemma I11.1 Under Conditionlll. 1,
nH(X) + /n M(X)?

if limpooen >
, then we have

11m Pr{—logm(z") > €n} =0.

n—

(6)

IV. CONSIDERATION
We obtained the probability of length overflow of codes, that
minimize the expected codelength. From above lemmas nei-
ther source distribution is known or unknown, under Condi-
tionIl. 1 ,III. 1, if we wish the probability of length overflow
goes to 0 then it is necessary that lim,_o €, > nH(X) +

/nM(X)2.
We introduce the moment of self-information and the mo-
ment of codelength, that play very important role to analyse

the probability of length overflow.
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Abstract — Watermarking (WM) codes are analyzed
from an information—theoretic viewpoint as identifi-
cation (ID) codes with side information that is avail-
able either at both transmitter and receiver or at the
transmitter only. For the former case, formulas are
provided for the ID capacity and for achievable er-
ror exponents. For the latter case, upper and lower
bounds to the ID capacity are derived.

WM techniques are about embedding a message into a
covertext dataset (say, an image) such that on the one hand,
quality is maintained, and on the other hand, this message
cannot be removed without access to some secret key or with-
out rendering the data useless. The main application is for
proving ownership of the data and for protection against forg-
ers.

In contrast to the vast amount of research work reported in
the signal/image processing literature, relatively little atten-
tion has been devoted to this problem from the information-
theoretic perspective. A few exceptions are, e.g., [2],(3],[5],[6],
where attempts were made to characterize capacity and/or
error exponents of WM systems by viewing them as coded
communication systems, where the covertext data plays the
role of side information available at the encoder only or at
both ends (depending on the application).

More precisely, consider the following system: A rate- R
block code of length n, fed by an (nR)-bit message m, and a
n-block of a memoryless covertext source V', generates an n-
block of the watermarked version X, within small degradation
of quality, symbolized by distortion Ed(V, X) < D;. An active
attacker, modeled as a memoryless channel W : X — Y may
introduce additional distortion Fd(X,Y) < D, in attempt to
disrupt the watermark. Finally, Y is decoded at the receiving
end, with or without access to the covertext V', in order to
extract the watermark.

In all the above-mentioned papers, WM systems were
viewed as ordinary communication systems, where the decoder
carries out full decoding, i.e., decides which one of 2"% pos-
sible messages was embedded. In most of the applications,
however, full decoding is not really necessary, as one needs
only to detect whether or not a particular watermark resides
in the covertext. Performance, in this case, is measured by
the tradeoffs between rate, false-alarm probability and mis-
detection probability. This observation guides us to view WM
codes as ID codes [1] rather than ordinary transmission codes.

Since in the ID setting, both false-alarm and misdetection
probabilities (of each individual message) can be kept arbi-
trarily small for large n even for-a doubly exponential number
of messages (when randomized encoders are allowed), the ID
WM capacity is defined as limsup of the normalized iterated
logarithm of the maximum achievable number of messages de-
fined by an encoder that satisfies the distortion constraint.

Our main results are as follows (for proofs, see [7]):

Theorem 1 For a discrete memoryless covertezt source V,
available at both transmitter and receiver, and a given DMC
W, the ID WM capacity Cy is given by

Ci=H(V)+supI(X;Y|V), (1)

where the supremum is over all triples (V,X)Y) dis-
tributed according to P(V,X,Y) = P(V)P(X|V)W(Y|X)
with Ed(V,X) < D,.

Theorem 2 For a discrete memoryless covertezt source V,
available at the transmitter only, and o given DMC W, the
ID WM capacity Cs is bounded by

sup I(U;Y) < C; < sup I(U;Y), (2)
B A

where A is the set of all quadruples (U,V,X,|Y) distributed
according to P(U,V,X,Y) = P(V)P(X,U|VI)W(Y|X) with
Ed(V,X) < D, and B is the same as A but with the addi-
tional constraint that I(U;V) < I(U;Y).

Two comments: (i) The direct part of Theorem 1 includes
a more refined analysis (see [7]) that characterizes a set of
achievable triples (R, E1, E2), where E; and F are exponen-
tial rates of the error probabilities of the two kinds. As E;
and E- tend to zero, the maximum achievable rate is R = C}.
(i) It is known that in ID problems, if both transmitter and
receiver have access to a common information source (com-
mon experiment) Z, then the ID capacity is increased by the
entropy of Z. In Theorem 1, obviously Z = V. In Theorem 2,
the receiver can partially guess V' with a common information
rate of I(U; V), which when added to I{U;Y) — I(U; V) (cor-
responding to the transmission capacity with side information
at the transmitter only [4]), gives I(U;Y). Accordingly, the
additional constraint of set B in Theorem 2 means that the
transmission capacity is positive.
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for Digital Watermarking and Information Embedding

Brian Chen and Gregory W. Wornell
Research Laboratory of Electronics and Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology, Room 36-631
Cambridge, MA 02139
Email: bchen@alum.mit.edu and gww@allegro.mit.edu

Abstract — We consider the problem of embedding
one signal (e.g., a digital watermark), within another
“host” signal to form a third, “composite” signal. The
goal is to achieve efficient rate-distortion-robustness
trade-offs. We introduce a new class of embedding
methods called distortion-compensated quantization
index modulation. In several different contexts in-
volving both intentional and unintentional attacks,
capacity-achieving methods exist within this class,
while in other contexts these methods achieve prov-
ably better rate-distortion-robustness performance
than previously proposed spread-spectrum and gen-
eralized low-bit(s) modulation methods.

I. INTRODUCTION

Digital watermarking and information embedding systems em-
bed information in a host signal, which is typically an image,
audio signal, or video signal. The host signal is not degraded
unacceptably in the process, and one can recover the water-
mark even if the composite host and watermark signal undergo
a variety of attacks as long as these corruptions do not unac-
ceptably degrade the host signal. These systems play an im-
portant role at least three major application areas: (1) copy-
right protection of multimedia content, (2) authentication and
tamper-detection, and (3) backwards-compatible upgrading of
existing legacy communication networks [1].

II. PROBLEM MODEL
We wish to embed a message m € {1,2,.. }, some-
times called a digital watermark, in some host signal vector
x € RN, where R, is the embedding rate in bits per host
signal sample. Specifically, m and x are mapped onto a com-
posite signal vector s € RV using some embedding function
s(x, m), and we define a distortion measure between x and s.
Equivalently, we can define a host-dependent distortion sig-
nal e(x, m) that is added to x to obtain s. The composite
signal s is subjected to unintentional attacks and possibly to
intentional attacks inside some channel, which produces an
output vector y € R". A decoder generates an estimate /M of
m after observing y, i.e., we consider the “host-blind” case,
where x is not available to the decoder. Ideally, the decoder
can reliably recover the embedded information as long as the
channel degradations are not too severe. Thus, the tolerable
severity of the degradations is a measure of the robustness of

NR
., 2NRn

.the system. The goodness of s(x, m) and its corresponding de-

coder is measured by the achievable rate-distortion-robustness
trade-offs.

This work has been supported in part by the Office of Naval Re-
search under Grant No. N00014-96-1-0930, by the Air Force Office
of Scientific Research under Grant No. F49620-96-1-0072, by the
MIT Lincoln Laboratory Advanced Concepts Committee, and by a
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Fig. 1: Quantization index modulation information embedding.

ITI. D1STORTION-COMPENSATED QUANTIZATION
INDEX MODULATION
Quantization index modulation (QIM) embedding functions
arise by defining an ensemble of quantizers q(-; m), one quan-
tizer in the ensemble for each possible value of m. Then,
s(x,m) = q(x;m). An example is shown in Fig. 1 for the
case where N = 1, R, = 1, and the quantizers are uniform,
scalar quantizers. One can decode, for example, by determin-
ing whether y is closer to a o point (M = 1) or to a x point
(M = 2). Thus, the x and o points represent both source code-
words for representing x and channel codewords for communi-
cating m. QIM systems reject interference from the host signal
since x determines which o or x point is chosen but does not
deflect s or y away from these points. Distortion-compensated
QIM (DC-QIM) systems add back some fraction 1 — « of the
quantization error, s(x, m) = q(x; m) + (1 — a)[x — q(x; m)],
which can be shown [1] to improve rate-distortion-robustness
performance with the proper choice of a.

IV. PERFORMANCE AGAINST ATTACKS

In fact, one can derive sufficient conditions under which
capacity-achieving DC-QIM systems exist [1]. These condi-
tions are satisfied in at least three cases: (1) the additive Gaus-
sian noise channel and Gaussian host signal scenario of [2],
(2) the case of squared error distortion-constrained attacks
and a Gaussian host signal described in [3], and (3) the case of
squared error distortion-constrained attacks, a non-Gaussian
host signal, asymptotically small embedding-induced distor-
tion, and asymptotically small attacker’s distortion described
in [3].

In a number of other contexts where the capacity is un-
known, DC-QIM methods achieve provably better perfor-
mance than previously proposed additive spread-spectrum
methods, which do not reject interference from the host signal,
and generalized low-bit(s) modulation methods. These cases
are discussed in [1], along with practical implementations of

DC-QIM and QIM systems.
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Abstract — We consider a watermarking system
where 2"EW distinct Gaussian watermarks are em-
bedded in respective copies of an n-dimensional i.i.d.
Gaussian image. Copies are distributed to customers
in digital form, using Rq bits per image dimension.
We establish the rate region for the pair (Rg, Rw) such
that (i) the average quadratic distortion between the
original image and each distributed copy is no more
than a specified level; and (ii) the error probability in
decoding the embedded watermark in the distributed
copy approaches zero asymptotically in n.

I. PROBLEM FORMULATION

Recently, there have been some information-theoretic ap-
proaches to the analysis of watermarking systems. Of particu-
lar interest is [1], which gives a general expression for the max-
imum rate of the set of messages that can be hidden within a
host data set subject to a distortion constraint, as well as the
requirement that the message withstand a deliberate attack
aimed to destroy it.

In this paper, we study a related problem that combines
source and channel coding in a watermarking framework. This
problem is motivated by the following scenario. A data dis-
tributor (e.g., a news agency) has to deliver an information
sequence I™ (e.g., a digital image) to M, = 2"Rw customers,
such that each customer receives a different watermarked ver-
sion of I™. To that end, the agent creates M, watermarks
X"(),...,X™(M,) independently of I™, and uses them to
generate the watermarked copies Y"(k) = I" + X"(k), k =
1,...,M,. Due to bandwidth limitations, the agent com-
presses the watermarked data at a rate of Rg bits per image
dimension subject to a fidelity criterion prior to distribution.

For security purposes as well as for maximum usability, we
assume that both the quantization and the reconstruction of
the image are independent of the choice of the watermark set.
In addition, the agent who generated the image should be able
to discern which watermark is present in a digital image with
a low probability of error P. (e.g.; in case an authenticator
needs to track down the initial owner of an illegally distributed
image). Therefore, watermarks and source codewords have to
be designed in such a way that knowledge of the watermark
set and the original data is enough for detecting reliably the
watermark in a compressed, watermarked image.

The main result of this paper is the determination of
the allowable rates Rg and Rw for the above system, un-
der the following assumptions: -(i) I™ is iid. N(0,Pr),
(i) the watermarks X™(1),...,X"(M,) are generated i.i.d.
N(0, Px) with Px < P;, and (jii) the distortion constraint
n~ E[||I" = Y™||?] < D is met (Y™ is the quantized version of
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Department of Electrical and
Computer Engineering
University of Maryland
College Park, MD 20742, USA

e-mail: adrian@eng.umd.edu

Rw

Tw(re(D), D)

rq(D) Rq

Fig. 1: For any distortion constraint D, the shaded area represents

the region Rp of achievable pairs (Rg, Rw ). As D varies, the min--

imum source coding rate rq(D) and the maximum corresponding
watermarking rate ry(rq(D), D) parametrically define curve C.

Y™). Unlike the case in [1], here we consider a single fidelity
criterion, namely the resultant distortion between the original
data sequence and the watermarked/quantized data. Also,
while quantization degrades the original image, it cannot be
construed as a malicious attack of the type modeled in [1]. In
our case, data compression and watermarking are cooperative
(not competing) schemes, and must be optimized jointly.

II. RESULTS

The coding theorem that establishes the bounds on R and
Rw consists of two parts. The forward theorem demonstrates
the existence of a source code for Y™ and an ii.d. Gaussian
random code for the watermark set such that the distortion
constraint is satisfied and the probability of error P, is ar-
bitrarily small, as long as (Rg, Rw) belongs to some region
Rp. The converse theorem shows that if an arbitrary source
code and an i.i.d. Gaussian watermark code jointly satisfy
the distortion constraint and yield an asymptotically vanish-
ing P., then (Rg, Rw) must lie in Rp. We proved that Rp
is characterized as follows:

a1 p?
Ro > roD) & =1 1
e 2 (D) 2°g((P,+PX)D—P,Px>
Rw < r(Ro,D) 2 Ro-log (%)

where Piaffg— < D < Py (all distortion values of interest). The
I X

graphical representation of these results is given in Figure 1.
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Abstract — We compute the value of the water-
marking game for a Gaussian covertext and squared-
error distortions. Both the public version of the game
(covertext known to neither attacker nor decoder) and
the private version of the game (covertext unknown
to attacker but known to decoder) are treated. Sur-
prisingly, the two versions yield identical values.

I. INTRODUCTION

The watermarking game [1, 2] can model a situation
where an original source sequence (“covertext”) needs to be
copyright-protected before it is distributed to the public.
The copyright (“message”) needs to be embedded in the dis-
tributed version (“stegotext”) so that no “attacker” with ac-
cess to the stegotext will be able produce a “forgery” that re-
sembles the covertext and yet does not contain the embedded
copyright message. The watermarking process (“encoding”)
should, of course, introduce little distortion so as to guaran-
tee that the stegotext closely resembles the original covertext.

Different messages may correspond to different possible
owners, versions, dates, etc. of the covertext, and it is thus
of interest to study the number of distinct messages that can
be embedded if reliable decoding is required from any rea-
sonable forgery. The highest exponential rate at which this
number can grow in relation to the covertext size is the cod-
ing value of the game. A precise statement of this problem
and some proofs can be found in [3].

II. WATERMARKING MODEL

The watermarking game can be described as follows. A
source emits the zero-mean variance-o2 IID length-n covertest
sequence U. Independently of U, a copyright message W is
drawn uniformly over the set W, = {1,...,[2"%]}, where R
is the rate of the system.

Using a secret key ©1, which is independent of U and W,
the encoder produces the stegotert X = X(U,W,0,) € R".
We require the encoder to satisfy || X—UJ|> < Dy, as., where
Dy > 0 is a given constant called the encoder distortion level,
and a.s. stands for “almost surely”.

The attacker, which is assumed to be ignorant of U and
©1, produces a forgery Y = Y(X,0;) € R" based on X
and its own attack key ©;. We similarly require the attacker
to satisfy 1||Y — X||> < Ds, as., where D2 > 0 is a given
constant called the attacker distortion level.

The decoder produces an estimate of the message W. In
the public version of the game, the decoder only uses the en-
coder’s secret key and the forgery, so that W = W(Y,©,).

}This research was supported in part by a NSF Graduate Fellow-
ship (A. Cohen) and by the NSF Faculty Early Career Development
(CAREER) Program (A. Lapidoth) at MIT. It was conducted in
part at the Institute for Signal and Information Processing, ETH.
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In the private version of the game, the decoder also uses the
covertext, so that W = W(Y,©,,U). We consider the prob-
ability of error averaged over the covertext, message and both
sources of randomness, which is written P.(n) = Pr(W # W).

We adopt a conservative approach to the watermarking
game and assume that once the watermarking system is em-
ployed, its details are made available to the attacker. The
attacker can thus optimize for the encoder and decoder. This
precludes the decoder from using the maximum-likelihood de-
coding rule. We thus say that rate R is achievable if there ex-
ists a sequence of allowable rate-R encoder and decoder pairs
such that for any sequence of allowable attackers, Pe(n) tends
to zero as n tends to infinity.

The value of the game is called the coding capacity, and
it is the supremum of all achievable rates. We write the cod-
ing capacity as Cpriv(D1, D2, 02) and Cpub(D1, D2, 02) for the
private and public versions of the game, respectively.

Theorem 1. For the Gaussian watermarking game,
Cpub(Dl)Dzvas) = Cpriv(Dl’DZ,U?‘)-

If the interval

A(D1, Ds,0%) = [max { Dz, (00 ~ VD1)*} , (0w + VDD)’]

is empty, then Cpriv(D1, D2,02) is zero. Otherwise,

2
Cporiv(Dy1, D2,0,) = max
A€EA(Dy .Dz,o":‘:)

1+ (5-3) (- 45 22)).

If expected rather than a.s. distortion constraints are used,
then the coding capacity for both versions is zero.

Note that the optimal A is a root of a cubic equation and
hence a closed form solution for the capacity exists. Differ-
ent capacity results for yet another version of this game with
expected distortion constraints and a decoder that knows the
attack strategy (ML decoder) have been recently reported in

(1]-
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Abstract — A metering scheme is a method to count
the number of clients which visit each server. Naor
and Pinkas [1] presented metering schemes which al-
low to identify servers which are visited by at least
a certain number h of clients and is secure against
attempts by servers of inflating the count of their vis-
its. In this paper we consider secure metering schemes
for ramp access structures. We provide lower bounds
on the size of the information given to clients and to
servers and present a scheme achieving these bounds.

I. INTRODUCTION

We consider a scenario where there are n clients, m servers
and an audit agency A whose task is to measure the interac-
tion between the n clients and the m servers in order to count
the number of client visits that any server receives. Our sce-
nario contemplates the existence of corrupt servers and cor-
rupt clients which could cooperate in order to inflate the count
of the visits that a corrupt server receives. Naor and Pinkas
[1] proposed metering schemes as a mean to prevent servers
from inflating the count of their visits. In their schemes any
server which is visited by a number of clients larger than or
equal to some threshold h provides A with a short proof. The
metering scheme operates for at most 7 time frames and du-
ring these time frames is supposed to be secure. A metering
scheme is secure at a certain time frame ¢ if any server visited
by less than h clients at that time frame has no information
about its proof. In our model the clients receive a certain

amount of information from the audit agency and give part of .

this information to the servers when visiting them. Given the
high complexity of such a distribution mechanism, a natural
step is to trade complexity for security. Hence, we consider
a more flexible situation where a server which receives less
than h visits is able t6 gain some partial information about
- its proof.

II. METERING SCHEMES FOR RAMP STRUCTURES

An (n,m,T,c,s) metering system X consists of n clients
Ci,...,Cn and m servers Sa,...,Sm, which are active for a
number 7 of time frames and in which ¢ clients and s servers
can be corrupt. A corrupt server can be assisted by corrupt
clients and other corrupt servers in order to inflate the count
of its visits. A corrupt client can donate to a corrupt server
the whole information it has received from A. A corrupt server
can donate to another corrupt server the information that it
has so far received from clients. A ramp structure indicates a
pair of thresholds (¢,h), where 1 <c<{f<h < n.

Fori=1,...,n,5=1,...,m,t=1,...,7, C; is the random
variable associated with the information given by A to C;,
Cf,j is that associated with the information given-by C; to
S; during a visit at time frame t, X} ) is that associated
with the information received by S; at time frame ¢ assuming
it is visited by d; clients at that time frame, and Pj is that
associated with the proof generated by §; when it is visited by

at least h clients during time frame ¢ and V}t] is that associated

with the information received by §; in time frames 1,...,1¢.

Definition II.1 Let £ be an (n,m,7,c,s) metering system.

An (n,m,T,c, s) metering scheme for an (¢, h) ramp structure

is a distribution protocol of the proofs for the m servers in £

in such a way that the following properties are satisfied:

L H(C{;IC)=0,i=1,...,n,j=1,...,m, t=1,...,T.

2. H(P§|X§,(dj)) =0,d;j >h,j=1,....m,t=1,...,7.

3. H(P},...,PhCi...CXt (). X o, VI VETH)
=H(P,...,P}),dj <l—c,j=1,....,58,t=1,...,7.

4 H(P,... ,P5IC1...CXE ... XG o, VI VETT)

=2 Y0 [h— (c+dy)|H(PYP ... Pi_y), where X! )
is associated with a set of visits to S; from d; clients other
than C1,...,Cc, £ <dj+c<h,j=1,...,8andt=1,...,7.
Lower Bounds

Theorem I1.2 Let ¥ be an (n,m,7,c,s) metering system.
Let 81,...,8s denote the corrupt servers. In any metering
scheme” for the ramp structure (¢,h) for 2, it holds that
H(Ci) > 55, H®P ... P), fori=1,...,n.
Theorem I1.3 Let & be an (n,m,7,c,s) metering system.
In any metering scheme for the ramp structure (£, h) for ¥ it
holds that H(Cf’j) > Fi—tH(Pg')’ foranyi=1,...,n, j =
1,...,m,andt=1,...,7.

A Scheme Achieving our Lower Bounds
Our scheme is a generalization of Shamir’s scheme [2].
Initialization: The audit agency A chooses h—£ polynomials
Pi(y),...,Pn-s(y) over GF(q), where ¢ is a prime number
larger than n+h—¢. Forr = 1,...,h—{, P.(y) has degree sT—
1. Let fi,..., fa—t be preselected elements of GF(g) distinct
from 1,...,n. Let Q(z,y) be a random bivariate polynomial
over GF(q) of degree h—1 in z and degree sT—1 in y, such that
Q(fr,y) = P-(y), for r = 1,...,h — £ (It is easy to construct
such a random polynomial by using Langrange polynomials.).
Hence, A sends to each client C; the univariate polynomial
Q(i,y), which is of degree s7 — 1. ‘
Regular Operation: When the client C; visits the server
S; in time frame ¢, it sends to §; the value Q(é,j o t). The
argument j o ¢t denotes the concatenation of j and ¢, and we
assume that j ot is in GF(q) and that no distinct two pairs
(4,t) and (5, ¢') are mapped to the same element.
Proof Generation: If the server S; has been visited by
at least h different clients in time frame ¢, then it can per-
form a Lagrange interpolation and reconstruct the polynomial
Q(z,jot).. Then, it computes Q(fr,jot) forr=1,...,h—¢.
The resulting (h — £)-tuple (Pi(jot),..., Pac¢(j o t)) consti-
tutes the proof that the server sends to the audit agency.
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Abstract — We give a conceptually simple proof for
the capacity of the exponential server queue. Our
proof links the timing channel to the point-process
channel with complete feedback. This point-process
approach enables us to bound capacities of timing
channels that arise in multiserver queues, queues in
tandem, and other simple configurations.

The capacity of the exponential server queue with service
rate g packets per second is e” 'y nats per second [1]. The
capacity of the point-process channel with maximum input
intensity p points per second, and no background intensity, is
also ™'y nats per second (cf.[2],[3]). Furthermore, in both
channels, the capacity does not increase in the presence of
complete feedback. In [1], the connection between both chan-
nels in the presence of complete feedback was discussed briefly.
In [4], this connection was further explored. It was shown
that any strategy on the expomnential server channel can be
mapped to an equivalent strategy that uses feedback on the
point-process channel. This observation implies that the ca-
pacity of the exponential server channel is upperbounded by
the capacity of the point-process channel with complete feed-
back, i.e., e~!y nats per second.

From [1], we know that e~ 'y nats per second is indeed
achievable on the exponential server queue. In other words,
although the exponential server queue is only a particular case
of a point-process channel with feedback, it attains the point-
process channel capacity. In this paper, we provide insight on
why there is no loss in capacity.

To see the connection between the queue and the point-
process channel, fix a sequence of arrivals denoted by the
counting process z = (z¢ : t € [0,T]). Let (Y;: ¢t € [0,T])
be the corresponding counting process of departures from the
single-server queue of service rate p packets per second. Then
the state process (Q: = z: — Y} : t € [0, T]) indicates the num-
ber of packets in the queue as a function of time. Furthermore,
the departure process (Y; : t € [0,T]) is a self-exciting Pois-
son process with rate A = (A = p1{Q:- > 0} : t € (0,T})).
Indeed, if Q¢ = 0, no packet can depart at time ¢ (€ (0,T])
and the instantaneous rate of the departure process is 0. If
Q:— > 0, at least one packet is in the system at £—. Due to the
memoryless property of exponential service times, the residual

‘time for the next departure is exponentially distributed with

mean 1/4 seconds, independent of the past, i.e., the instanta-
neous rate of the departure process is g at time t.

It is well-known that the sample function density (which
plays the role of probability density) given input z, is p(z,y),
where

T
p(z,y) £ exp { / llog(Ae) dye — Ae dt]} : 6))
0

1This work was supported in part by the National Science Foun-
dation under Grant NCR-9523805 002

Furthermore, for a given probability measure on the input
space, the normalized mutual information is

T
%IT(X;Y) = %—E-/0 dt [¢(/\t) —¢(5\t)] ) (2)

where Ae = E [\ (Ys : 5 €[0,1))], for each t € [0,T], and
$(u) = ulog u, (see [2], [3], [5]). We take #(0) = 0. Note that
At is an estimate of the rate of the departure process given
prior departures.

We can show the existence of codes that have vanishing
probability of error (as the observation interval T increases
without bound) at rate e 'y nats per second. Here, for
brevity, we only argue that there is an input probability mea-
sure such that the normalized mutual information equals the
upperbound e ™' i nats per second. The input measure should
induce the following properties to attain the upperbound.

(a) A =0o0r p.

®) (YT) [ dt E[A]=ep.

(¢) At should be independent of prior departures
(Ys : s €[0,t)), and E[A;] should be a constant over
time, i.e., M=e" u.

Let the input probability measure be a Poisson process with
rate e~ ' i packets per second. Let the queue be in equilibrium
at t = 0. We then have an M/M/1 queueing system. Property
(a) holds because A; is p times an indicator function. Property
(b) follows from ergodicity of the state process and the fact
that the queue is nonempty with probability e~!. Property (c)
holds by Burke’s theorem (for e.g., [5, V.T1]); the state of the
queue Q; is independent of prior departures (Y; : s € [0,t))
and therefore so is A;.

The point-process approach via (1), (2) and the filtering
techniques of [5] (to provide estimates of queue size) can be
used to find achievable rates of some simple networks of ex-
ponential servers. In [6], lower bounds on the capacities of
multiserver queues and two queues connected in tandem are
provided.
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Abstract — This work focuses on covert timing chan-

nels, in which information is conveyed in the timing

of packets. Jamming strategies and coding strategies
are developed for various timing channel models.

I. INTRODUCTION

Information can be conveyed covertly using the timing of
packet transmissions, where the usage is covert because by
design and common usage, information in packet communica-
tion networks is conveyed only by the bits within the pack-
ets. While there is no apparent way to completely eliminate
covert timing channels in a reliable communications system
(e.g. [1]), a delay device can be added to the channel to jam
covert timing communication. With an appropriate coding
and decoding scheme, a timing channel coder can still reliably
communicate in the presence of a jammer. For various chan-
nel models and delay constraints on the jammer, the game
between the jammer and the coder is explored.

II. ASSUMPTIONS

We assume that the mean number of packets per unit time
transmitted by the coder is constrained such that for a large
fixed time, T, the total number of arrivals is at most AT with
probability one. We take T — oo and write I for mutual
information per unit time. . The coder is aware of the delay
constraints placed on the jammer, but is not aware of the
actual strategy employed by the jammer. We assume that no
feedback is given to the coder.

The jammer can choose any delay strategy, including
strategies that change the packet ordering, subject to con-
straints on the delay. However, the jammer cannot insert du-
plicate or additional packets since this might impact the un-
derlying packet communication system. The delay constraints
that we consider for jammers include a Maximum-Delay-Less-
than-D (MDLD) constraint, an Average-Delay-D (ADD) con-
straint, and a Maximum-Buffer-Size-B (MBB) constraint.

III. CHANNEL MODELS

A continuous time packet model and a discrete time packet
model are considered. :
In the continuous time packet model, there are no lower
bounds on the spacing between initiations of packet transmis-
sions so the coder or the jammer can send multiple packets in
a single instant. The only restriction on the continuous time

1James Giles is supported by a Department of Defense NDSEG
Fellowship. This work was also supported by the National Science
Foundation under Grant ANR-99-80544.

packet model is that neither the coder nor the jammer can
split a packet. ‘

In the discrete time packet model, time is slotted and both
the coder and the jammer can transmit zero or one packets in
each time slot. The discrete time packet model is a tractable
way to introduce a lower bound on the interpacket spacing.

Two more models are introduced to facilitate analysis.
These models have fluid flows rather than packet streams.

IV. RESULTS

We look for jamming strategies, Q, that satisfy
maxx I(X,Q) = ming maxx I(X,Q), and coding strategies
X, that satisfy ming I(X,Q) = maxx ming I(X,Q) where
I(X,Q) represents the mutual information per unit time be-
tween X and the output of jammer @ when X is the input.

For the set of MDLD jammers in the continuous time packet
model, we have found a saddlepoint coding and jamming strat-
egy, with mutual information rate &H(Geoo(AD)). For an
ADD jammer in the continuous time fluid model, we have
shown that the mutual information rate for a saddlepoint is
between 0.55/D bits per unit delay and 4/D bits per unit de-
lay, if a saddlepoint exists. For a MBB jammer in the discrete
time packet model, we have upper and lower bounds on the
mutual information rate for a saddlepoint that are within a
factor of 2. The min-max and max-min capacities of the fluid
models are shown to dominate those of the packet models for
several scenarios.

For many of our results we assume that the coder and de-
coder have access to a source of common randomness (they
choose a code without the jammer’s knowledge), and that the
coder and decoder have access to a common clock. However,
for particular constraints and models, such as a MDLD con-
straint in the continuous time packet model, we have coding
schemes that do not depend on these assumptions.

V. MORE INFORMATION
For more information and a complete paper see:

http://www.comm.csl.uiuc.edu/ hajek.
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Abstract — We study information transmission
through a finite buffer channel modeled as a concate-
nation of a discrete memoryless channel and a finite
state erasure channel. The state of the erasure chan-
nel is determined by the buffer occupancy upon ar-
rival of the transmission symbol; an erasure occurs
when an input arrives to a full buffer. We show that
the capacity of the channel depends on the long-term
loss probability of the buffer and the capacity of the
DMC. Thus, even though the channel itself has mem-
ory, the capacity apparently depends only on the sta-
tionary loss probability of the buffer. We also show
that delayed feedback does not help in this channel.
We also study the channel as a deletion channel where
we do not know where the erasures have occurred.

I. SUMMARY

‘We propose a channel abstraction for the finite-buffer channel
and study its capacity. This model is motivated by packet-
switched networks, where a packet is queued in a finite buffer
on each router along its path through the network. A packet
can be dropped because of buffer overflow, or corrupted due
to transmission errors. We do not consider coding in inter-
arrival times in this abstraction!. Note that the sender may
have control over the long-term packet arrival rate, which af-
fects the loss process at the buffer; however, there is no side
information transmitted using the arrival process.

We formulate this problem as transmission over a finite
state channel where the transitions of the finite state channel
occur due to arrivals and departures of packets to the buffer.
The model considered resembles the problem of transmission
through finite state channels studied extensively [2]. But one
of the differences is that the state process need not be Marko-
vian (see Figure I). In this paper we consider only a single
user’s packets arriving at the buffer and the buffer state is
affected by the arrivals of that user.

Figure 1: Finite-state channel model.

We first consider the problem where the receiver knows
when a packet is dropped. In practice, this is done using a

17This is conjectured due to the result in [1] that coding in interar-
rival times is unnecessary when the alphabet size of the transmitted
symbol is large (packet sizes in current networks range from a few
tens of bytes to a few thousand). Though this was proved in the
context of infinite buffer channels, we believe that this is true in
our case as well.

sequence number associated with packets. Later we study the
channel where this is not known and model it as a deletion
channel. Under regularity conditions on the state transition
process we can prove a coding theorem for the proposed chan-
nel model [3]. We show that though this channel has memory,
the capacity is determined by the long term stationary loss
probability of the buffer. That is, the capacity is the prod-
uct of the capacity of the DMC and that of the long term
probability of a packet getting through. This shows that even
though the finite buffer channel has complicated memory, its
capacity behavior is akin to a simple erasure channel.

Proposition 1.1 Under mizing and asymptotic mean sta-
tionarity conditions on the state process {Qi}, the capacity
of the finite buffer channel is given by,

. R
C=lim Cn=0Colim 03 PQ:i#B}, (@
where B denotes the full buffer state and Cp is the capacity of
the DMC. Furthermore, capacity can be achieved by an i.i.d.
input process {X:}.

This capacity is expressed in bits per packet. This can
be translated to a transmission rate (bits/second) by taking
into account the packet arrival process, based on some ergodic
conditions on the arrival process. Note that the average packet
arrival rate can be chosen to maximize this transmission rate.

We also studied the case where there is feedback available
from the channel output to the transmitter, delayed by at least
one symbol. We showed that feedback in this case does not
improve the channel capacity even though the channel could
have complicated memory?.

Finally we study a model of transmission in the absence
of sequence numbers on the packets. This can be studied as
a deletion channel. Similar problems have arisen in the con-
text of transmission in the presence of synchronization errors,
studied in [4] among others. This is a difficult problem in gen-
eral and we study specific deletion models and develop some
bounds for achievable performance.
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throughput. We have not addressed that problem here.
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Abstract — The Burrows-Wheeler transform is a
block-sorting algorithm which has been shown empir-
ically to be useful in compressing text data. In this
paper we study the output distribution of the trans-
form for i.i.d. sources, tree sources and stationary
ergodic sources. We can also give analytic bounds
on the performance of some universal compression
schemes which use the Burrows-Wheeler transform.

I. INTRODUCTION

Burrows and Wheeler [2] proposed a lossless transformation
which they showed (with empirical evidence) to be useful for
the lossless compression of data. Recently there has been
increasing interest in understanding and improving the per-
formance of data compression algorithms using the Burrows-
Wheeler transform (BWT). From empirical evidence [2] it ap-
pears that compression methods using this transform achieve
better performance than Lempel-Ziv techniques, while not be-

‘ing computationally as intensive as compression methods us-

ing statistical modeling techniques. While there has been a
large amount of empirical evidence to show the efficacy of the
transform (e.g., [2], [3]), the analysis of the compression ef-
ficiency of methods based on the transform has received less
attention. Sadakane [5], Arimura and Yamamoto [6], Balken-
hol and Kurtz [4] and Effros [1] have provided the first steps
in this direction.

In this paper we investigate the joint distribution at the
output of the Burrows-Wheeler transform. For various classes
of input sources, we show that the output distribution of the
transform is approximately memoryless and piecewise station-
ary, in the sense that the normalized divergence between the
output distribution and a memoryless and piecewise station-
ary distribution is small. Thus coding schemes that are good
for memoryless, piecewise stationary sources can be used to
give good coding performance. We also derive bounds on the
coding rate for some data compression algorithms that use
the BWT. The schemes that we analyze were also analyzed in
[1] where bounds were obtained on average code length. The
bounds we give are on individual sequences.

1I. MAIN RESULT

We now introduce some notation so that we can precisely state
our main result. We consider a Markov process X which is a
Markov source taking values in A and the set of states S is a
complete and prefix-free subset of A*. Let |S| = k and label
the states s1,32,...,8k in lexicographic order. We assume
that the Markov source is irreducible and aperiodic. Let the
steady state probability of a state s € S be denoted by =(s)
and P(als) denote the probability that a € A occurs when

1This work was partially supported by the National Science
Foundation under Grants NYI Award IRI-0457645 and NCR
9523805
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we are in state s € S. Let C(i) = E;.:l w(s;). We will
show that the divergence between the output distribution and
a memoryless, piecewise stationary distribution with k& — 1
transitions is small. Let T1,T%,...,Tk41 be integers defined
by T; = [C(: — 1)n} + 1. Note that C(0) = 0 and so T3 = 1.
Let us now define a memoryless distribution Q™ with k& — 1
changes in distribution, by

Q"(v") =

II Pisy).

k Tjp1—1
1 i=TJ'

i=

We show that the output distribution is close to the distribu-
tion Q".

Theorem 1 Consider a tree source for which P(als) > 0 for
alla € A, s € § with entropy rate H. Let X™ be the output of
the tree source in steady state, Y™ = ¢pwr(R(X")) and Py»
denote the distribution of Y. Then

1 n c
—D(Pr-|lQ™) < T

for some constant ¢, where R is a map from a string to its
reverse and ¢pwT is @ map from a string to the string part of
its Burrows- Wheeler Transform.

The assumption that P(a|s) > 0 for all a,s can be removed
and a result similar to the one above can be given. A re-
sult similar in spirit to the one above can also be shown for
stationary ergodic sources.

Finally, we mention that we have also analyzed various
methods to compress the the output of the BWT and obtained
bounds on their performance. These results are like those in
[1] except that we obtain results for individual sequences.
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Abstract — We apply complexity regularization to
statistical ill-posed inverse problems in imaging. We
formulate a natural distortion measure in image space
and develop nonasymptotic bounds on estimation per-
formance in terms of an index of resolvability that
characterizes the compressibility of the true image.
These bounds extend previous results that were ob-
tained under simpler observational models.

I. STATEMENT OF THE PROBLEM

In imaging problems such as tomography, astronomical
imaging, ultrasound imaging, radar imaging, forensic science,
and image restoration, a statistical model relating the obser-
vations to the underlying image is often available [1]. Con-
sjder a penalized-likelihood approach to statistical imaging:
fly) = argming[—Inp(ylf) + u®(f)], where p(y|f) is the
conditional density relating the observations y € ) to the
unknown image f € F, and ®(f) is the regularization func-
tional, which penalizes “unlikely” estimates and stabilizes the
ML estimator. The regularization parameter p controls the
trade—-off between the log-likelihood term and the regulariza-
tion penalty. The choice of ®(f) depends on available a prior:
knowledge. L', Besov, total-variation and robust smoothness
penalties are state of the art in image processing.

In this paper, we investigate the choice of complexity mea-
sures for the regularization penalty ®(f). Such penalties favor
estimates with low complexity in a data compression sense.
Compared to the more standard L2, L' and Besov penal-
ties, complexity regularization penalizes unlikely estimates in
a more flexible way, as complexity measures may be based
on rather sophisticated, possibly implicit, flexible probabil-
ity models. The complexity-regularization criterion is stated
as f(y) = argminger [— Inp(y|f) + pL(f)], where I is a dis-
crete set of candidate images, informally referred to as a code-
book. Complexity is measured by a codelength L(f) associated
with each f € I'. Codewords should satisfy Kraft's inequal-
ity Efef e ¥ < 1. The MDL principle [2] is a familiar
instance of complexity regularization, where p = 1.

The use of MDL and complexity regularization has found
theoretical justification in a variety of inference problems
[3, 4, 5]. Extending such analysis to problems of interest in
imaging entails several technical difficulties. First, the data
are not identically distributed. Second, the bounds derived
by extension of the techniques in (3, 4, 5] are often too large
to be useful in practical imaging problems.

Consider the relative-entropy loss d(f*, f) =

xDeWI)lp(lf) for f*f € F, where D(pllg) =

p(y 1n£’.(.¥ldy_ The estimation risk is defined as
y ()

1Work supported by the National Science Foundation under
award MIP-9732995 (CAREER), by ARO under contract num-
bers ARO DAAH-04-95-1-0494 and ARMY WUHT-011398-S1. and
by DARPA under Contract F49620-98-1-0498, administered by
AFOSR. :

() = E[d(f',f)], where the expectation is with
respect to p(y|f*). Relative-entropy loss is the natural choice
to characterize the performance of penalized likelihood esti-
mators. This loss becomes a squared-error loss for additive
white Gaussian noise (AWGN) models, and an I-divergence
loss for Poisson noise models. If d(f~, f) for some f # f*,
then f* is not identifiable. For ill-posed problems, the class
of images C.(f*) = {f : d(f", f) < €} is large for any € > 0.

II. UrPER BOUNDS ON ESTIMATION PERFORMANCE

We now give upper bounds on d(f‘,f). See [6] for
more details. Define the index of resolvability R,(f*) =
minger [d(f‘,f) + pi’(ﬁf—)], f* € F. This quantity describes
how well f* can be approximated in the relative-entropy sense
by a moderately-complex element of the codebook I'.

The upper bounds are essentially proportional to the index
of resolvability, with a very small (O(1/N)) additive constant.
For the AWGN model y; = f{ + wi, 1 <1 < N, w; ~ iid.
N(0,06?), we have Theorem 1 below, which applies to any
g > 1 (recall p =1 is the MDL choice). The techniques used
in [4], which do not require knowledge of the noise distribu-
tion but assume that Bernstein’s inequality applies to that
distribution, provide looser bounds.

Theorem 1 For any 4 > 1 and n > 0, the loss of the
complexity-regularized estimator f under the AWGN model

” 21pl
satisfles Pr [d(f*,f) < %R,t(f‘) + %‘—_—m&] >1-mn. The

risk is upper—bounded by E[d(f”, f)] < ﬁ—f—:RM(f') + FZ_“%,-

For some non-Gaussian models, under certain large-sample
assumptions, log-likelihood ratios are asymptotically normally
distributed, and tight inequalities can be obtained again. Un-
der some additional technical assumptions, the first bound of
Theorem 1 still applies, provided that the inequality is re-
placed with an asymptotic inequality.
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Abstract — Pairs of binary pilot symbol sequences
are jointly designed to minimize an introduced merit
factor whose minimization leads to the reduction in
Cramer-Rao lower bound (CRLB) for the “two-sided”
intersymbol interference channel estimation.

I. INTRODUCTION

It is a common approach to periodically insert known sym-
bols in order to reliably estimate the channel parameters prior
to detection. In the case of time-variant multi-path fading
channels where the path delay spread is on the order of sev-
eral symbols or larger, pilot symbol blocks that span the
channel memory need to be inserted. In deriving optimal,
or some decision-feedback detection and channel estimation
algorithms, the signal is frequently assumed to be quasi-static
in an interval encompassing a number of transmitted symbols.

Here it is assumed that both pilot symbol blocks (pream-
ble and postamble) that frame a block of data (see Fig. 1) are
employed for estimation of the (quasi-static) channel coeffi-
cients pertaining to a particular data block. This approach
we term “two-sided” channel estimation. It is shown the con-
structed optimal sequences for two-sided channel estimation
require that the two pilot symbol blocks framing a data block
almost always differ and, therefore, the optimal signaling re-
quires alternating periodically inserted training blocks.

D N+L1

ess Data [ Preamble l Data IPoslamblél Data voe

Timg —»

Figure 1: Two-sided pilot symbol block insertion.

II. SiGNAL MODEL

A symbol-spaced received signal is assumed and a normal-
ized block of received samples over which the channel is (quasi-
)static can be expressed as follows:

r=Ah+n.

n is a sample vector of a white circular Gaussian noise process
with a two-sided PSD Ny/E;, where E; is the symbol energy;
h is a Lx1 vector of channel coefficients. A is a Toeplitz
matrix corresponding to the transmitted sequence of symbols
from {+1, -1} of the form A = [P?DTP%"]T. P; and P; are
N by L pilot symbol Toeplitz submatrices consisting of only
preamble and postamble symbol sequences of length (N + L —
1) and no data symbols D is a D+ L — 1 by L submatrix that

1This work was supported in part by the NSF grant NCR-
9314221.
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holds all the data symbols. N > L is assumed so that each
pilot-symbol block spans the channel.

III. MINI-MAX CRITERION AND OPTIMAL SEQUENCES
The CRLB of the two-sided ML channel estimatior% based
on the “two-sided” pilot-symbol matrix P = [Png] i

where R = PP = P¥P; + P¥P,. Instead of directly min-
imizing tr{R~'} we suggest minimizing the largest absolute

sum

Pmax = mf-xz lpizl,

J#

where p;; is the ij-th element of R. Minimization of pmax is
equivalent to the minimization of the maximum Gerschgorin
disc radius of R. Thus, it attempts a reduction in the eigen-
value spread and forces the matrix R to have a form which is
as close as possible to the diagonal form.

When prax = 0 the Grammian matrix R = 2N - I, where
1 is the identity matrix. The ML channel estimation achieves
the absolute minimum variance lower bound ¢ E 2N Binary
odd- and even-periodic complementary sequence ([1], [3]) pairs
achieve pmax = 0 and, thus, are optimal for “two-sided” ISI
channel estimation for even N > L.

When N is odd, pmax = 0 (and the CRLB %51-2—1;7
cannot be achieved. For a subset of odd N “almost-
complementary” periodic binary sequence pairs achieve the
minimum possible pmax = 2LL—;—1J Additionally, “good” se-
quence pairs achieve pmax = 4|L/2] < 2N which assures
that R is non-singular and, consequently, that the CRLB is

bounded. Given a generator sequence u = [uog,...,un-1],

both almost-complementary and good sequences pairs (p1 =

lpro,---,p1,N+L-2], P2 = [P2,0,...,P2,N+L-2]) are formed as

follows:

and p2k = (—1)kp1,k:

for 0 <k < N+ L — 2. For almost complementary sequences
the perlodlc autocorrelation of the periodic extension u? of u
‘S|Zk u”uz_HI =1for 0 <1< N —1. That is, they can be
formed from m-, Barker, Legendre, and twin-prime sequences
(see e.g. [2]). “Good” sequences are based on sequences given
in [4] whose periodic autocorrelation has values in {1, —3}.

P1,k = UkmodN
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Abstract — We obtain a general form of the multi-
variate Rayleigh and exponential probability density
functions (p.d.f.s) when these are generated by corre-
lated Gaussian random variables. A general expres-
sion for the exponential characteristic function (c.f.)
is also derived.

I. INTRODUCTION

Multivariate Rayleigh and exponential distributions [1] arise
in the performance analysis of digital modulation schemes over
correlated Rayleigh fading channels using diversity combining
techniques. The Rayleigh distribution is a special case of the
Nakagami distribution, while the exponential is a special case
of the gamma. A bivariate Rayleigh case [2] has been applied
to fading channels using dual diversity [3]. A multivariate
gamma case has been dealt with in situations in which the c.f.
has a specific form [4][5]. Here we obtain a general form of the
multivariate Rayleigh and exponential p.d.f.s when these are
generated by correlated Gaussian random variables. We also
derive a general expression for the exponential c.f.

II. PROBABILITY DENSITY FUNCTIONS
Consider zero-mean real Gaussian L X 1 random vectors
X, 2 [ Xeyro oy Xey, ]T ,and X, 2 [ Xory 1 Xoy ]T 1
with covariance matrices K . and K, and cross-covariance
matrix K ,, such that

E [XE‘] = (KCC)Z‘I (—an)zi =E [XE,] ]
E[XCiX!"] = (—K-cs)ii =0, i=1,...,L.

In other words, X.; and X,, are i.i.d. Gaussian for each 1.

Define random variables ay,...,ar, @;,...,9; as
1
2 (X2 +x2)7, & = tan™! (é—t) ,i=1,...,L Let

a= [ Qy, QL ]T be a Rayleigh random vector. Denote

— —ch -‘K-cs -1 _ é ..-B.
K—[KTK]’I_{' '_|:§T D]?

=<8 —388 -_
such that 4 = [Au],] 1y B= [B“']LL] =1y D [DIJ]«.J 1
From the joint p.d.f. of (___c,__,) the p.df of a, which is

multivariate Rayleigh, is given by
L

2 = (d;t(lx))& (2w)L/ / exp ——g(u ¢)) dey - -dor,

u > 0, where

..‘,
rs

L
9(5,2) = z (A,-i cos2 @i + Dis sin2 @i + 2B, cos ¢; sin ¢,~) u?
i=1 ’
L, (Aijcosgicos ¢; + Dijsingising;
> ,
1 +2.B"j cos ¢; sin ¢j)uguj

ij=

i#j
w=luy, o u)”, o=(¢1,--, 6] 1)
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The p.df of the ezponential random wvector 4 given by
y= [ Yy YL ]T = [ al,-.., 0k ]Tcan be obtained from
the multivariate Rayleigh p.d.f. (1).

When X + 73X, is a circular complex Gaussian random
vector satisfying E [(Kc + X (X, +]2{_,)T] = 0, we have,
fori,j=1,...,L,

Aij = Aji=Dji= D;;, Bij=-Bji wheni#3j, Bi=0
in (1), and therefore

g(u, ) = ZA,,u + 2 Z A2 + 32 u,-u,- cos (¢ — ¢; + 6i5) ,

i,5=1
i<y
where 0;; = tan™" [By;/Ay;). Further, if X_ and X, are i.id.
zero-mean Gaussian random vectors, then B = 0.
III. CHARACTERISTIC F'UNCTION
Although it is difficult to obtain a closed-form expression for

the multivariate Rayleigh c.f., the multivariate exponential c.f.
can be expressed in closed form as
1
O

Uy () = {det (I, ~ 2sdiag(w)K.
~ 2diag(w)K,,] + 4diag@)KT,

x{det([

x [, — 2sdiag(@)K..] " diag(y)ﬁc,) }—)" , ()

where [, is the L x L identity matrix.
If we have the condition that X . and X, are i.i.d. random
vectors, then the c.f. (2) simplifies to

V() = {det(I, — 2sdiag(w)K. )} " . ®3)

The gamma c.f.s in [4][5] reduce to (3) when the gamma pa-
rameter equals unity.

IV. BIVARIATE CASE
By putting L = 2 and the circularity condition in (1), we ob-
tain the bivariate Rayleigh p.d.f. of [2]. The structure of this
p.d.f. does not simplify further in the case of i.i.d. generating
vectors X, and X .
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Abstract — Recently, Ericson and Zinoviev pre-
sented a clever, new construction for spherical codes
for the Gaussian channel using ideas of code concate-
nation and set partitioning. This family of new spher-
ical codes is generated from sets of binary codes using
equally spaced symmetric pointsets on the real line.
The family contains some of the best known spherical
codes in terms of minimum distance. In this paper,
we present a new decoding algorithm for this family of
spherical codes which is more efficient than maximum
likelihood decoding. At low signal to noise ratios, it is
99% equivalent to maximum likelihood but takes just
2% of the computational time.

I. ERICSON AND ZINOVIEV’S CODE CONSTRUCTION

In [1], a clever construction of spherical codes, some with op-
timal minimum distance, for Gaussian channel is presented.
We include those same results in a modified form for even
alphabet size.

The code construction begins with choosing K even and
the code alphabet Ly = {:t%,:h‘;—j,...,:t%} Let Lx =
{0,1,...,% — 1} and form a tree with node labels, I' =
L U {), *}, using the following rules.

1. The root of the tree is A and X is adjacent only to *.
Every internal node has exactly two children except for
X . We will say that node X is at level —1, * is at level
0, the children of * are at level 1, etc. i

9. The children of * are labeled 0 and 1 with 0 being the
left child.

3. For succeeding levels, say level k, the left child of a
node at level k — 1 is labeled the same as its parent and
the right child is chosen from Lx so that the sum of the
labels of the two children is 2* —1. If that is impossible,
the node at level k — 1 is a leaf.

We choose a binary code for each internal node of the tree.
Codes at level k will be designated C* where 7 is the label of
the corresponding node on the tree. An arbitrary code, Cy !
of length 7 is chosen for node A. A code, C? of length n and
constant weight w, is chosen for node *. Suppose internal
node v at level k — 1, (k > 1) has internal node left child +!
and internal node right child yr and code Cf,‘ ~! of length nf,”l
and constant weight w:™' has been chosen for node . Then
code C’f,‘, of length nf“,l = nf,'l - wf,'l and constant weight
w,’j, is chosen for node 7! and code G,’;, of length n’f,, = wy,
and constant weight w’.;, is chosen for node 'yr.‘

The tree of binary codes and alphabet Lx is used to
form a spherical code, X, of length n for the Gaussian
¢hannel. For each collection of codewords {c} € C} |

Guodong Liu
Intelligent Information Systems
Durham, NC 27713
US.A.

Cf, is a code in the tree}, we form a codeword z € X in the
following manner. Suppose the tree has m + 1 levels of inter-
nal vertices. We form a m + 1 by n matrix where the rows
are labeled by the levels of the tree and the itE row consists
of the codewords chosen from the codes at that level in the
tree. We arrange the codewords in row i in a special manner
depending on the binary codes chosen in the itk level of the
tree. The binary sequences that are the columns of the matrix
correspond to the components of = and there is an algorithm
to translate each binary sequence into an element of Lk.

The following result relating the minimum distance of the
spherical code X to the minimum distances of the binary codes
{C¥|k > -1} appears in [1].

Theorem 1 Let X be the spherical code generated by Ericson
and Zinoviev’s construction using the binary codes {Ch|k >
—1}. Let d’f, be the minimum Hamming distance of the code C&’,‘
and let d2 be the (unnormalized) minimum squared distance of
X. Then d® > min{d: - 4¥*'|k > —1}.

II. DECODING ALGORITHM

The first step is to perform binary partitions of the alphabet
Lx which we now simply denote L. Qur partitions are made
in a tree structure and have the same properties of partitions
of the set Z + § in [1]. We call the elements of the partition
subalphabets.

Let ¢ = (z1,72,...,%n) € X, where z1,Z2,...,Z. € L,
be the word obtained by Ericson and Zinoviev’s construction
from the code words c!,c?,...,¢° of C*,C?,...,C", respec-
tively. Suppose d; = minimum Hamming distance of C* and
p: = squared minimum distance of the subalphabets at level
i. Let y = (y1,92,.--,Yn),¥; € R be the received word cor-
rupted by noise. The new decoding algorithm consists of s
steps, where each step finds c¢t,i =1,...,s. At each step,
the decoding algorithm is divided into an inner code decoding
algorithm and an outer code decoding algorithm. The outer
code decoding algorithm incorporates Forney’s idea of error
and erasure decoding and Zinoviev’s idea of distance decod-
ing.

Theorem 2 Let z be the transmitted codeword constructed by
the binary codewords e, c?,...,¢,...,c° and y the received
word corrupted by noise. Assume that the first code vectors
¢, c?,...,c7 Y have been found correctly, if p(z,y) < dipi /4
then the decoding algorithm will correctly decode to codewérd

c.
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Abstract — Quotients of IR? by translation groups
are metric spaces known as flat tori. We start from
codes which are vertices of closed graphs on a flat
torus and, through an identification of these with a 2-
dimensional surface in a 3-dimensional sphere in R,
we show such graph signal sets generate [M, 4] Slepian-
type cyclic codes for M = a® +b?; a,b € Z, ged(a, b) = 1.
The cyclic labeling of these codes corresponds to walk-
ing step-by-step on a (a,b)-type knot on a flat torus
and its performance is better when compared with ei-
ther the standard M-PSK or any cartesian product of
Ml-PSK and MZ'PSK’ M1M2 =M.

Group codes introduced by D. Slepian and developed in
subsequent articles are defined as finite sets on a n-dimensional
sphere generated by the action of a group of orthogonal ma-
trices. Geometrically uniform codes introduced by Forney
[3] generalize this concept by considering also infinite sets of
points in Euclidean space having a transitive symmetry group.
We consider here like in [2] those codes extended to the wider
context of metric spaces: a signal set S C X is a geomet-
rically uniform code if and only if for s,t in S there is an
isometry f (depending on s,t) in X such that f(s) = t and
f(S) = S. We still have all the highly desirable properties
that come from homogenity: same distance profile, congru-
ent Voronoi regions and same error transmition probability
for each codeword. The metric space considered here is the
flat torus, obtained by identifying the opposite sides of a par-
allelogram based on plane vectors @ and @. If G is the group
generated by translations by @ and ¥, the correspondent flat
torus can be defined as the quotient Tapy = IRZ/G, what
means that the equivalence relation in the plane is given by

P'zP@P-—P':mﬁ'+mT:m,n€Z‘

A flat torus can be visualized as a standard torus in 3-
space, but it can distinguished from the later by being per-
fectly homogeneous and locally like a piece of plane (flat). It
can only be realized isometrically as a 2-dimensional surface
in R* which is contained in a 3-dimensional sphere.

Starting from the squared lattice Z? on the plane, we induce
a closed graph ['¢, 5y of M = a? + b? vertices on the flat torus
generated by the rotated square based on vectors i = (a,b)
and ¥ = (—=b,a), a,b € Z. An isometry which embeds this flat
torus in 3-dimensional sphere in IR* can be induced by:

Va? + b2 27 (azx + yb) 27 (az + yb)
QD(IJ,y) - om cos a,2 + bQ , SIn a2 + b2 )

27 (ay — zb)
cos — 3 T sin

27 (ay — zb)) '

a? + b2
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Vertical translation by one in the plane corresponds to an
orthogonal 4 x 4 matrix g which is product of rotations of
angles 012{—';77 and Z%E? If a and b are coprimes, this matrix
generates a cyclic group of order a® +b?, what means all plane
vertices can be reached starting from any point and going
north. This labeling can be identified with a walking step-
by-step along a (a,b)-type knot on T. The included figure
illustrates the homogeneous 13 vertex closed graph on the flat
torus (right side) labeled by Z,3 through vertical translation
walking on a (2, 3)-type (trefoil) knot (left side).

a
J

//7 2\
nole b M
V)
\10 5 Jo s
u
N 4 D2 A
(0.0)

Formally, considering the above notation for Ta,bys Tap
and g, we can state:

Proposition 1 The vertices of the unit squared graph Lo
on the flat torus T, by correspond through the isometry induced
by ¢ to a Slepian-type code S of order M = a® + b* on the

§-sphere of radius VAT in IR*. Besides:
14 o

(i) If ged(a,b) = 1, S is generated by a single point

¢((0,0)) = @(1,0, 1,0) through the action of the cyclic
group () = Z 2,42 (g is the direct product of rotations whose
angles are % and af% .

(1) If ged(a,b) = m > 1, S is generated by a minimal set
©((k,0)), 0 < k < m — 1 through the cyclic group (g;) =

Z 212y /ms that is, this subgroup of orthogonal 4 x 4 matrices
2
(a2+4b2)/m"

(iii) The minimal Euclidean distance, d, in IR* between two
Slepian-signals, considering the 8-sphere re-scaled to radius
one is given by:

2 _ .2 b .2 Ta
d —2<sm (m)+sm (az—i—b?))’

In [1] a graph metric approach for geometrically uniform
codes of any order M on flat tori is summarized.

that acts transitively on S s isomorphic to Z
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Abstract — A majority logic decoding is suitable for
ASIC design of the proposed code. Four-dimensional
size-five code of 625-bit length was implemented on a
VLSI and attained an operation speed up to 50Mbps
and 32-bit burst correction.

I. INTRODUCTION

Recent code requirements are to attain high-speed opera-

tion and robust correction ability for a long burst error. The
proposed code has been constituted on a geometric structure
| of high-dimensional cube or torus. The code properties are de-
| pendent not on the Hamming distance but on the geometric
| size and symmetry of the code. The characteristics and uncor-
rectable symmetrical solid are discussed. This paper describes
a majority logic decoding which is suitable for high-speed op-
eration on an ASIC.

II. CODE PRINCIPLE

A code block is wound up to a small symmetrical cube with
size m on a high n-D code space. Each digit of the cube satis-
fies n parity check relations of each axial check line containing
m digits. The transmission rate becomes n power of one mi-
nus m-inverse. Both edges of each parity line are identified
as a closed circle by way of the parity function. So, the cube
topologically becomes an n-dimensional discrete torus. If the
size of the cube is smaller than the geometrical mesh modeled
by the inverse of the mean error rate of the channel, the cube
could be transferred through the channel without serious er-
rors. The transmission order of the code digits varies in many
ways with the winding of the torus knot. For a high-D long-
block code, errors introduced by a channel become random on
each parity line, since the errors are dispersed by the winding,
regardless of random or burst errors. The correction ability
for both errors is roughly given as follows; correctable burst
length versus block size or the mean error rate for random are
equally given by a function of the inverse of the code size m.

III. DECODING CHARACTERISTICS

The code works efficiently on a majority logic decoding
scheme of the number of erroneous parity lines of the said
digit. When a digit exceeds the threshold is correctly cor-
rected, the other erroneous digits on the connected parity line
come up and are corrected at the next decoding, since the er-
roneous weights becomes high by one. With this code alone,
it is possible to iterate hard decision decoding any number of
times because the parity line does not lose the function due to
the preceding correction. Through iteration, error successively

1This work was supported by the 98 NEDO project of the Min-
istry of International Trade and Industry of Japan.
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decreases to the probabilistic limit given by the symmetrical
error solid. The error remains uncorrected for the high-D er-
ror solid, for example, the symmetric n-D solid is undetected
on account of the parity function, so the n — 1D solid can be
detected but not corrected because the error position is not
determined. The half-error symmetrical n-D solid is also un-
corrected, since error and true digits are interchanged during
each decoding. In order to correct the error solid perfectly,
the dimensions of the solid should be two degrees less than
the code space dimensions.

IV. VLSI IMPLEMENTATION

The code consists of a simple parity check calculation and
the relationship between the parity and the data digits was
clearly obtained. A large part of the encoding and decoding
processes was built in by adopting wired connection between
the memory cells of the VLSI. The majority logic decoding of
each cycle in the iteration was performed with just one clock
time, excepting one block time delay to receive a full code
block. The VLSI architecture resulted in increased code speed.
The encoder and decoder circuits of the four-dimensional and
five-size 4Dmb code whose code length is 625 bits and the rate
is 0.41 were installed on a 50-kilogate, 0.6 micron rule ASIC.

V. PERFORMANCE

The code attained high-speed operation up to 50Mbps and
robust correction ability for burst error with 7 iterations. The
code corrected burst error up to 32 bits in length with zero
error. The performance is much better than that of conven-
tional codes, that is, 16 bits for Reed-Solomon code of (15,7)
on ¢ = 4, and 4 bits for Viterbi decoding Convolution code
with constrain length K = 7. The Turbo code with the Log-
MAP decoding of 624 bits in length corrects almost 4 bits
burst, but fails in the decoding two times out of ten thousand
trials. It took the simulation time more than hundred times
of that of the proposed code. When the code is evaluated for
random errors, the performance for a low-grade decoding bit
error rate of ten to the minus 3 to 5 is approximately the same
as the Convolution code of rate R = 7/8, K = 7 with Viterbi
decoding. But for higher grade performance of ten to the mi-
nus 8 or less, the proposed code shows more coding gain than
Viterbi decoding of Convolution code of R=1/2, K =1T.
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) Abstract — Let M be a polynomial metric space

(PMS) [2] with metric d(z,y) and standard substitu-
tion t = o(d(z,y)). Any finite nonempty subset C of
M is called a code. A code for which o(d(z,y)) < o(d)
(z,y € C) and d is the minimum distance of C is an
(M,]C|, g)-code. We will give some properties of the so
called test functions for codes and we will improve the
Levenshtein bound with polynomials of degree h(c)+2
‘and h(o) + 3.

I. INTRODUCTION

PMS are finite metric spaces represented by P- and Q- poly-
nomial association schemes as well as infinite metric spaces,
which are the real sphere, the real, complex or quaternions
projective space and the Cayley projective plane. On the
other hand PMS are distinguished as antipodal and non-
antipodal. Any PMS is connected with a system of constants
7i, a system of orthogonal polynomials {Q:(t)} and adjacent
system of polynomials {QZ'b(t)} with roots —1 < tZ:? <1,
it = 1,...,k, ordered in increasing order, tZ'b = t:i Most
of the properties of {Q%*(t)} can be found in [2]. By defini-
tion Tg*(z,y) = Zf:o 22 Q¥ ()Q%*(y). Many bounds for
the cardinality of codes and designs were obtained by using
the Linear Programming Theorem [2, p.544]. If we denote by
Am,o the set of real polynomials which satisfy the conditions
of the LP Theorem, then |C| < Q(f), for f € Am,.. We will
investigate the Levenshtein bound L(M,¢) for codes, which
can be presented in the following form [2]:

B , i Q]lc‘i)1+g(0) k—1+4¢ .
C1< LM, 0) = (f (1) = (1- =552) 37, (1)
5 (@) i=0

where ¢ = 0 if t,lc’_l1 <o < t,‘c’o and e =1if t,lc'0 <o < t,lc",
and f7(t) = (t — 0)(t + 1)°(T5, (t, 0))? of degree h(o).

II. TEST FUNCTIONS AND NEW BOUND

Boyvalenkov, Danev and Bumova [1] obtain necessary and
sufficient conditions for the optimality of f7(¢) over Am,0, in-
troducing the test functions Go (M, Q;). They prove that the
bound (1) can be improved by a polynomial in Axq,. of degree
j if and only if G5 (M, Q;) < 0. In {3] we define analogous test
functions G-(M, Q;) for designs.

In this section we use the connections between codes and
designs and the corresponding test functions. Applying analo-
gous approach as in [3] we investigate the properties of the test
functions for codes and derive an analytical form of the poly-
nomials; which improve the Levenshtein bound. For fixed j,
G+(M, Q;) is a continuous function of o and G,(M, Q;) = 0,
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when h(c) > j. We examine the sign of Go(M,Q;). Let

us consider the interval Iy = [tii:l,t;"’) and denote

h(t,lc'i;fl) = 7. We have Go (M, Qn(oy+1) > 0.

Lemma 1 If G, (M,Qr42) > 0 then Go(M,Qr(s)42) > 0
for o € In(oy. If Gr(M,Qr41) <0 for k > 2 then there exzist
20 < ti':_;_sl and z1 > t,lc'_:_:_el such that GO’(M)Qh(d)+k) <
0 for o € [t,lc’i;_‘l,zl) and Go (M, Qn(o)+k+1) < 0 for o €

(20,t,°).

In other words there exists an interval I, = (#0,21) for
o, containing t,lc’i:fl in which G,(M, Q-+x) is negative, i.e.
the Levenshtein bound can be improved in this interval using

polynomial of degree 7 + k, k > 2.

Corollary 2 For antipodal PMS the test function

Go (M, Qr(e)+2) is positive.

As a consequence of the above using our results from [3] we
conclude that the smallest possible degree of the improving
polynomials is 7 + 2 = h(o) + 2 or k(o) + 3 for non-antipodal
spaces and 7 + 3 = h(o) + 3 or h(o) + 4 for antipodal PMS.
Here we present the analytical form of the polynomial which
improve the Levenshtein bound in the non-antipodal case.

Theorem 3 Let M be non-antipodal PMS, T = h(tif_:l)
and let us consider the interval I,. Then the polynomial

fFlir+2) = (t—0)t+1)° [alTy5(t0)?
+ (BT (8,0) + BT (t,0) + T (¢, 0))2),

of degree T + 2 belongs to Am.o for constants o, £, B2 satis-
fying certain conditions.

Now using the LP Theorem with the polynomial f°(¢;7+2)
we derive new analytical bound V(M, o).

Theorem 4 If the conditions of Theorem &8 are satisfied then
IC| S V(M,0) = Qf°(t; 7 +2)) < LM, 0).
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Abstract — A polynomial-time soft-decision decod-
ing algorithm for Reed-Solomon codes is developed.
The algorithm is algebraic in nature and builds upon
the interpolation procedure proposed by Guruswami
and Sudan for hard-decision decoding. Algebraic soft-
decision decoding is achieved by means of converting
the soft-decision reliability information into a set of
interpolations ‘points along with their multiplicities.
The conversion procedure is shown to be optimal
for a certain probabilistic model. The resulting soft-
decoding algorithm significantly outperforms both the
Guruswami-Sudan decoding and the generalized min-
imum distance (GMD) decoding, while maintaining
a complexity that is polynomial in the length of the
code. Asymptotic analysis for a large number of in-
terpolation points is presented, culminating in a com-
plete geometric characterization of the decoding re-
gions of the proposed algorithm. The algorithm easily
extends to polynomial-time soft-decision decoding of
BCH codes and codes from algebraic curves.

I. INTRODUCTION

Reed-Solomon (RS) codes are one of the most extensively used
families of error-control codes. Since the discovery of these
codes four decades ago, a steady stream of work has been
devoted to their decoding. Nevertheless, soft-decision decod-
ing of Reed-Solomon codes is still essentially out of reach of
present-day methods. Indeed, all the known optimal soft-
decoding algorithms for RS codes are non-algebraic and run in
time that scales exponentially with the length of the code. On
the other hand, all the available polynomial-time algorithms,
except for GMD decoding [1], are based mainly on heuristics.
Thus, in light of the ubiquity of Reed-Solomon codes, efficient
soft-decision decoding of RS codes remains one of the most
important problems in coding theory and practice.

II. ALGEBRAIC SOFT-DECISION DECODING

In the full version of this paper [3], we present an efficient soft-
decision decoding algorithm for Reed-Solomon codes. The al-
gorithm is algebraic in nature and, for any desired level of
performance (within a certain fundamental bound), its com-
plexity is bounded by a polynomial in the codeword length.
Our algorithm significantly outperforms both the Guruswami-
Sudan [2] decoding and the GMD-based [1] decoding methods.
Figure 1 shows the performance of these algorithms for a sim-
ple coding scheme: a (256,144,113) RS code over GF(256)
concatenated with the (9, 8,2) binary code.

Our algorithm is based on the algebraic interpolation
techniques developed by Sudan [2,4]. To achieve soft-decision
decoding, we translate the soft-decision reliability information
into a set of algebraic constraints. More specifically, given the
channel output vector (y1,¥2,...,yn) and the a posteriori
transition probabilities Pr(c;|y;), we iteratively compute a set
of interpolation points along with their multiplicities. We
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show that, at each step of the computation, this choice of
_interpolation points is optimal, in a certain precise sense.
The complexity of this computation is O(n® logn).

i H H
28 3 as 4 45 s
SNRAB]

Figure 1. Performance comparison on an AWGN channel

The algorithm of Guruswami-Sudan [2,4] is based on alge-
braic interpolation and factorization techniques that can be
implemented efficiently in polynomial time. Our soft-decision
decoding procedure inherits these properties of Guruswami-
Sudan decoding. One of its most intriguing characteristics
of our soft-decoding algorithm is a complexity/performance
trade-off that can be chosen freely. Thus the coding gain pro-
vided by the Reed-Solomon code can be traded for complexity,
in real-time, in any application. Another interesting feature
of our algorithm is that it readily extends to the decoding
of BCH codes and most algebraic-geometric codes.

We also present asymptotic performance analysis, as the
number of interpolation points approaches infinity. The
anilysis leads to a simple geometric characterization of the
(asymptotic) decoding regions of the algorithm. We find that
under soft-decision list-decoding, arbitrarily small probability
of error is achievable in polynomial time, providing the rate of
the code does not exceed a certain constant ¥ that depends
on the channel. Finally, we consider modifications to our
algorithm designed to maximize the set of correctable error
patterns on the following channels: g-ary symmetric channel,
g-ary symmetric channel with erasures, and a simplified
¢-PSK channel. Surprisingly, our results for the g-ary sym-
metric channel are stronger than those reported in [2], even
though this channel provides no soft-decision information.
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Abstract — The paper presents a Maximum Like-
lihood Decoding and a sub-optimum decoding algo-
rithm for Reed-Solomon codes. The proposed algo-
rithms are based on the algebraic structure of RS
codes represented in GF(2). Theoretical bounds on
the performance are derived and shown to be accu-
rate. The proposed sub-optimum algorithm is seen to
have better error performance compared to other sub-
optimum decoding algorithms while the new MLD al-
gorithm has significantly lower decoding complexity
when compared to other MLD algorithms.

I. INTRODUCTION

Reed-Solomon (RS) codes are a powerful class of maximum
separable block codes, suitable for error control on real chan-
nels. Algebraic Hard Decision Decoding (HDD) algorithms
are widely used for RS codes. It has been shown that Soft De-
cision Decoding offers 2-3 dB coding gain in excess of HDD.
Unfortunately most SDD algorithms proposed in the past have
either been of high computational complexity or fail to demon-
strate significant performance improvement over HDD. Hence
the search for efficient SDD algorithms for RS codes still con-
tinues.

Vardy and Beery proposed a MLD algorithm [1] based on
the structure of the generator matrix of RS codes represented
in GF(2). RS codes can be be represented as a union of cosets.
Such partitions into cosets allow a decoding algorithm to be
developed. The algorithm is several orders of magnitude lower
in complexity compared to trellis decoding for high rate codes
up to length 15 and low rate (< 0.5) codes of any length.

We present two SDD algorithms based on the same struc-
tural properties the Vardy-Beery algorithm uses. Hence the
algorithms may be considered as modifications of the Vardy-
Beery algorithm. It is shown that a RS codeword is formed by
interleaving words chosen (with a certain order) from either a
binary BCH code or one of its cosets. This property is used
to derive a computationally efficient ML SDD algorithm. The
reduction in complexity achieved with reference to the Vardy-
Beery algorithm is considerable. The proposed algorithm can
be changed into a sub-optimum algorithm, thus trading-off
complexity with performance.

II. DECODING
Let grs(X) be the generator polynomial of an (N,K) RS code,
Crs , over GF(2™). If a is a primitive element of GF(2™),
grs(X) is given by
2t

grs(X) =[] (x+a’) (1)

i=1

where 2t = N — K. Now define an (N,k) binary BCH
code, Cgon with generator polynomial gecu(X) with roots

{a,0%,03,... ,0®} and their cyclotomic conjugates over
GF(2™). The message length k, is less than or equal to K.
Define a transformation ¢ : GF(2™) — GF(2)™ with basis
{70,71,..- ,¥Ym-1}. Using this transformation, a code poly-
nomial, crs(X) of Crs is given by:

m—1 . X

> v [elon(X) +19(x)]

i=0

crs(X)

m—1 m-—1
= Y vcaenX)+ Y %1Px) @
j=0 j=0
where cgst(X) € Cpcy and 19(X) is a coset leader poly-
nomial.

We use the above algebraic property to device an efficient
decoding algorithm.

III. SIMULATION RESULTS

The proposed algorithms were applied to a range of Reed-
Solomon codes up to length 127 and the minimum Hamming
distance up to 7. The simulation results are obtained for an-
tipodal signalling over an AWGN channel. Table 1 gives the
required bit energy to noise ratio % to achieve 10~® BER for
the proposed algorithms, GMD and the Berlekemp-Massey
HDD algorithm. It is observed that the proposed MLD algo-
rithm requires 1.9-3dB lower SNR to achieve the target BER
of 107%, compared to the HDD algorithm. It is also shown
in Table 1 that the proposed sub-optimum algorithm achieves
near-MLD performance for all codes tested. The loss in per-
formance at BER of 10° is consistently below 1.0 dB.

RS Ao & at BER=10"°
Code ™" MLD | SOPT | GMD | HDD
(31,29) [ 3 [64dB[66dB | 7.9dB [8.4dB
(6361) | 3 [6.6dB | 6.8dB [81dB |[86dB
(127,125) | 3 | 6.8dB | 7.0dB | 8.4dB | 8.8dB
(1511) | 5 [53dB[56dB | 7.2dB | 7.8dB
(31,27) | 5 |52dB |53dB | 7.2dB [7.6dB
(6359) | 5 [5.5dB [6.3dB | 7.6dB | 7.8 dB
(159) | 7 |45dB [51dB | 6.9dB | 7.6dB
(31,25) | 7 [42dB[52dB | 6.7dB | 7.2dB

Table 1: Required % to achieve BER of 10~3 for various
codes and decoding algorithms.
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Abstract — We use the Plotkin (u,u+v)-construction
for general Reed-Muller codes (m,r) and relegate de-
coding to the two constituent RM codes. First, we
use the better protected code (m-1,r-1) to find a sub-
block v. Then we proceed with the block u from the
code (m-1,r). We repeat this recursion on both halves
and recalculate the reliabilities of the received sym-
bols. In the end, we perform ML decoding on the
biorthogonal codes.

I. RECURSIVE TECHNIQUES

Below, general Reed-Muller codes RM(r,m) are denoted
{™} . Plotkin construction represents these codes in the form

(u,u+v), where ue {™ '} andv € {T_’ll} . By splittirg
both halves, we obtain shorter RM codes until we arrive at the
biorthogonal codes {7} or single-parity check codes { ; J 1}

Now consider the received block (ﬁ,m) corrupted by
noise. We first try to find the better protected block v. In hard
decision decoding, we use its corrupted version %+ (m) In
more general setting, we first use the left half %, and find the
posterior probability pi. = Pr{u; =0 | @ } of each symbol u;.

Similarly, we use the right half u 4+ v to find the posterior
probability p{’ of any symbol u; +v;i. Then any symbol v; has
posterior probability: :

p(vi) = pipi + (1 = pi)(1 —pY).

In Step 1 of our algorithm, we use probabilities p(v;) to exe-
m-1 }-code.

-1
The result of decoding is (presumably correct) codeword v.
After v is found, we have two corrupted copies of vector u,
namely 7 in the left half, and (4 + v)+v in the right half. Our
next goal is to jointly decode both copies. Similarly to Step
1, we use posterior probabilities p(u;) of symbols u;. Here we
combine the two estimates of u; obtained on both corrupted
copies. Finally, we perform soft decision decoding and find
(presumably correct) subblock u € { ™'}
In a general scheme, decoding on the length n/2 is again rel-
egated to the shorter codes. On all intermediate steps we only
recalculate symbol reliabilities. Maximum likelihood decoding

is executed at the end nodes {J} and { ,-i L } . Decoding re-

quires about O(nlogn) operations.

It can be shown that the output bit error rates significantly
vary on different end nodes. In particular, the highest (worst)
BER is obtained on the node { ™7} that is decoded first.
An important conclusion is to set the corresponding infor-
mation bits as zeros. In this way, we improve on the overall
performance by taking the subcodeés that eliminate a few least
protected information bits in the original code {':} .

cute soft-decision decoding of vector ¥ into the

1 This work was supported by the NSF grant NCR-9703844.
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In asymptotic setting [4], our decoding increasingly outper-
forms both the majority algorithm and the former recursive
techniques [1)-{3] as the block length grows. In particular, for
long RM codes of fixed rate, we increase bounded-distance
threshold In d times and correct most error patterns of weight
up to (dInd)/2. Simulation results presented below show that
this improvement starts at very short lengths.

IT. SIMULATION RESULTS

Table 1 summarizes simulation results for the RM code {i}
of length 512 and dimension 256. We also consider a subcode
of dimension 223 and present both bit- (BER) and block
(BLER) error rates. The results are compared with the
former recursuve technique presented in [3]. Similar results
are obtained in Table 2 for RM code {3} of dimension 130
and its subcode of dimension 87.

Table 1. Output error rates for code {2} .

SNR (dB) ERE 4
Recursive [3] 09 |05 0.2
Recursive (new) 0.2 |0.03 2:10~°
BER for subcode | 0.05 [ 3-1077 | 3-10™°
BLER for subcode | 0.2 | 0.02 2.10~*

Table 2. Output error rates for code {g} .
4

SNR (dB) 7 13

Recursive 0.2 0.08 8.10°3
BER for subcode | 0.02 | 1077 3.10°°
BLER for subcode | 0.08 | 3-107° [ 10~*

Further improvements of recursive techniques are presented
below for RM code {g} of length 256 and dimension 37. For
these (or similar) parameters, our decoding outperforms all
suboptimal algorithms known to date.

Table 3. Output bit error rates for RM code {5} .

SNR (dB) [ 1 15 2 25 3

BER 10~° 41073 [ 1078 2:107* ] 2:107°

BLER 41072 [ 107° 31073 | 5.107% | 8:107°
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Abstract — In this paper, the statistical approach
proposed by Agrawal and Vardy to evaluate the error
performance of the Generalized Minimum Distance
(GMD) decoding is extended to other reliability based
decoding algorithms for binary linear block codes,
namely Chase-type, combined GMD and Chase-type,
and ordered statistic decodings. In all cases, tighter
and simplier bounds than previously proposed ones
have been obtained with this approach.

1. SUMMARY
A difficult task related to suboptimum decoding algorithms
is their error performance analysis at practical SNR values. It
has long been believed that a good criterion to design a subop-
timum soft decision decoding algorithm was to prove that the

algorithm achieves bounded distance decoding (or is asymp-

totically optimum). However, recent studies indicate that this
simple criterion usually does not reflect the behavior of the al-
gorithm considered at practical SNR values. In particular, an
approach based on the union bound is highly misleading and
more sophisticated bounding methods are needed.

In [1], a new upper bound on the error performance of
GMD decoding [2] has been presented. Interestingly, under
some mild assumptions, this upper bound is tight at all SNR
values. The error performance analysis of [1] is based on the
probability density functions of the j-th ordered reliability

- value among 7 hard-decision errors in a received sequence of

length N for 1 < j < 4, and on the probability density func-
tions of the I-th ordered reliability value among the remaining
N =i correct hard-decisions in the received sequence of length
N,for 1<I<N-—.

In this paper, we first extend the approach of [1] to evalu-
ate the error performance of Chase-type decoding. For the
algorithm-2 introduced in [3] and BPSK transmission over
an AWGN channel, the obtained bound falls on top of the
simulated results at all SNR values, as depicted in Fig. 1 for
Chase-2 decoding applied to the p = 7 and p = 10 least reliable
positions of the received sequence for the (127,64) BCH code.
The bounding method is then applied to the combination of
GMD and Chase-type decodings as introduced in {4]. Tight
bounds are obtained for the entire family of algorithms corre-
sponding to this generalization. Finally, the bounding method
is applied to the ordered statistic decoding (OSD) algorithm
of [5]. The computational complexities of the corresponding
bounds are smaller than that of the bounds derived in [5] for
high orders of reprocessing. The new bounds are compared
with the simulation results of OSD of the (128,64) extended
BCH (eBCH) code in Fig. 2. The detailed derivations of these
bounds are given in [6].

1This work was supported by the National Science Foundation
under Grant CCR-97-32959.

REFERENCES

[1] D. Agrawal and A. Vardy, “Generalized Minimum Distance
Decoding in Euclidean-Space: Performance Analysis,” IEEE
Trans. Inform. Theory, IT-46, pp. 60-83, Jan. 2000.

[2] G. D. Forney Jr., “Generalized Minimum Distance Decoding,”
IEEE Trans. Inform. Theory, IT-12, pp. 125-131, Apr. 1966.

[3] D. Chase, “A Class of Algorithms for Decoding Block Codes
with Channel Measurement Information,” IEEE Trans. In-
form. Theory, IT-18, pp. 170-182, Jan. 1972.

(4] M. Fossorier and S. Lin, “ Chase-Type and GMD Coset Decod-
ings,” IEEE Trans. Commun., COM-48, Mar. 2000.

[6] M. Fossorier and S. Lin, “Soft-Decision Decoding of Linear
Block Codes based on Ordered Statistics,” IEEE Trans. Inform.
Theory, IT-41, pp. 1379-1396, Sept. 1995. :

[6] M. Fossorier and S. Lin, “Error Performance Analysis for
Reliability-Based Decoding Algorithms,” submitted to IEEE
Trans. Inform. Theory, June 1999.

g
] 4
¥
- = : Theoretical bounds
i o Simulaiions p-Chese. p = 7 1
x: Simulations p-Chase, p = 10
| _
) T 2 ) n s [
SNR (in dB)
Figure 1: Word error rate for p-Chase decoding of the

(127,64) BCH code with p =7 and p = 10.

'
'

+ T
: Thaoratical bounds gn Plist
ratical bounds on PiistsPmi_|

: Simiations ordar.
: Simulations order—1
+Simulations order—2" oo
: Simulationa order-3

: Simulations ordor—4'

o+ B x 0%y ! ]

i H
[ 1 2

4
SNR (in dB)

Figure 2: Word error rate for each stage of order-4 OSD of
the (128,64) eBCH code.

64

0-7803-5857-0/00/$10.00 ©2000 IEEE.



ISIT 2000, Sorrento, ltaly, June 25-30,2000

Analysis of the Trellis Complexity of Interleavers and Turbo Codes

Roberto Garello *, Guido Montorsi **, Sergio Benedetto **, Giovanni Cancellieri *

* Dipartimento di Elettronica ed Automatica
Universita di Ancona, Italy
e-mail: roberto.garelloQieee.org

Abstract — The trellis complexity of causal and non-
causal interleavers are studied via the introduction
of the input-output interleaver code. The “average”
complexity of a uniform interleaver is computed. The
trellis complexity of a turbo code is then tied to the
complexity of the constituent interleaver. A proce-
dure of complexity reduction by coordinate permuta-
tion is also presented, together with some examples
of its application.

I. INTRODUCTION

For a block code C(n, k), the most used trellis complexity
parameters are: the maximum state complexity S(C) =
maxo<i<n $(i), where s(2) = log, |2(7)|, and X(2) is the state
space at time 0 < 7 < n; the maximum branch complex-
ity B(C) = maxi<;<n b(), where b(¢) = log, [['(¢,7 + 1)}, and
I'(i,441) is the trellis section at time 0 < ¢ < n; the average

branch symbol complexity E(C) = (31— IT(i,i+1)|)/k. .

It is well known that coordinate permutations p can strongly
change the complexity parameters. In other words, given C,
one can base a “real” measure of the complexity of C upon the
parameters S = min,{S(p(C))}, B = min,{B(p(C))}, and
E = min, {E(p(C))). |

II. INTERLEAVERS

An interleaver Z is a device characterized by a fixed
permutation pz : Z < Z. 7T maps bi-infinite input bi-
nary sequences x into permuted output sequences y with
y(i) = z(pz(?)). Given an interleaver I, we introduce the
(input-output) interleaver code Cz defined as the set of-
all input/output interleaver sequence pairs (x,y). For causal
interleavers, it is well known and intuitive that the state space

_ size is constant. When more general interleavers (non-causal,

too) we have [1]:

Theorem 1 )

For every interleaver code Cz: sz(i) = |Ai|+|P:|, where: A; =
{7e€Z:j<i,p()>}, Pi={j€Z:j>1i,p(5)<i}.v

III. THE TRELLIS COMPLEXITY OF TURBO CODES

Let us consider turbo codes of rate-1/3 obtained from
two equal binary systematic convolutional encoders of rate-
1/2 and constraint length v and a block interleaver (Z, ) of
length N.

Theorem 2
For a turbo code C the state profile is equal to: sc(i) =
sz(1) + c(i), with c(i) < 2v. v

A uniform interleaver of length NV is a probabilistic in-
terleaver that acts as the “average” of all possible interleavers
of length N. :

Theorem 3
For an uniform block interleaver of length INV:

** Dipartimento di Elettronica
Politecnico di Torino, Italy
e-mail: benedetto@polito.it
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Fig. 1: State and branch profile for the turbo code of Example 1.

szu (i) = ———2(NN_W

with
complexity is equal to Sg} = N/2.

Theorem 4 i

For a turbo code C formed by two constituent encoders of
constraint length v and a uniform block interleaver Z of length
N: scu(d) = _;>(NN__1)1 +c(i), with ¢(i) < 2v. Its maximum
state complexity is ng)/ =N/2+c, with c<2Vv. ¢

0 < i < N. Its maximum state

IV. REDUCING THE COMPLEXITY OF TURBO CODES

Given an interleaver (Z, pz) the permutations p1 = (I, p™ %)
and p2 = (p, I) minimizes the complexity parameters of p(Cz)
toS=0,B=1,and E =4 Using this result, to reduce the
complexity of a turbo code employing a block interleaver 7, we
have considered these two permutations: pmini = (I,I,77%)
and pmin2 = (m, m, I).

As an example, impressive results in terms of complexity
reduction through the application of pmin1 and pmin2 can be
obtained for the class of turbo codes employing row-by-column
block interleavers. It can be proved that, when N is a power
of two, N/2 < S® < N/2 + 2v. By applying pmin1 (Pmin2,
respectively) when Ng > N¢ (Nr < N¢), we obtain a consis-
tent reduction to S© = v(2Ne — 1) (§® = v(2Ng - 1)).
ExAMPLE 1
Consider a turbo code composed by two equal 4-state con-
volutional encoders and a block rectangular interleaver with
N =64, Ng = 16 and N¢ = 4. In Fig. 1 we report the state
and branch profiles of the turbo code evaluated directly and

through the permutation pmini, showing a significant com- -

plexity reduction.
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Abstract — We show that the decoding performance
of a simple turbo code can be improved by cross-
entropy minimization via manipulation of the initial
a priori probabilities.

I. IMPROVING TURBO DECODING

While Turbo decoding of parallel concatenated codes (PCC)
has been shown to offer near Shannon-limit performance, it is
known that the decoding is sub-optimal. For example it has
been shown analytically by McEliece et al. [1] that, for certain
" received values of a (14, 3) PCC, the turbo decoding process
does not converge . However, this does not cover all cases
of non-convergence. Furthermore, there are also cases where
the turbo decoding process converges to a non-maximum a
posteriori probability (non-optimum) decision.

We investigated the turbo decoding performance when the
initial e priori probabilities (APRP) are biased to the op-
timally decoded message for this (14,3) turbo code. This
method, which assumes knowledge of the optimum decision,
is referred to in this paper as the “Genie” Turbo Decoding
method (GT). Figure la shows the BER surface when initial
APRPs for the first two of the three information bits are bi-
ased with respect to the optimum decision with values ranging
from §; = 2 = 0 (correctly biased) to 61 = d2 = 1 (incorrectly
biased). The BER, which is measured for an E,/N, of 5dB,
shows a slight improvement when both bits are biased cor-
rectly as opposed to the unbiased case (§; = 0.5, V7).

Hagenauer et al. [2] have proposed using cross-entropy be-
tween the outputs of the component decoders to detect con-
vergence. The similarity between the cross-entropy surface
(figure 1b) and the BER surface (figure 1a) suggests that the
cross-entropy values may be used to infer initial APRP set-
tings in order to improve decoding performance.

We modified the turbo-decoding process by biasing the
APRPs to the eight possible messages, each for a fixed num-
ber of iterations. The output of the bias that yields the lowest
cross-entropy at the final iteration is then chosen. We refer
to this technique as Entropy Minimization Turbo Decoding
(EMT). Table 1 compares the percentage increase in BER
with respect to optimum decision decoding for the traditional
turbo decoding, EMT, and GT approaches at various Ep/N,
values. The performance for GT and the traditional turbo de-
coding are shown for the average obtained between 50 and 100
iterations, while the EMT performance is for just 2 iterations
(at each of the 8 possible messages).

II. RESULTS
It is seen that GT always out-performs the traditional turbo

decoder showing that there is a potential for improvement at
all E;/N, by biasing the initial APRPs; further, this poten-
tial for improvement is significantly greater at higher E;/N,.
Above 2 dB, EMT also performs better than traditional turbo
decoding and nears the performance of GT at 5 dB.

Joachim Hagenauer
Institute for Communications Engineering
TU Miinchen, Germany
hag@QLNT.e-technik.tu-muenchen.de

Based on these results, we believe it is possible to im-
prove the performance of more practical turbo-decoders by
pre-setting the initial APRPs.

od

=)
© o
(=3 ~
o o

Average Cross-Entropy

Figure 1: BER and Cross-Entropy Surfaces

2dB | 3dB | 4dB | 5dB

Turbo | 6.07 | 817 | 10.81 | 14.74
EMT | 693 | 7.29 | 8.67 | 8.71
GT 5.10 | 6.15 | 7.40 | 8.46

Table 1: Percentage Increase in BER w.r.t. Optimum
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Abstract — We present a simplified method for
combining turbo decoding and binary Markov chan-
nels. The resulting performance is slightly worse than
that of the best known methods using supertrellis ap-
proaches, but it clearly outperforms traditional sys-
tems based on channel interleaving. Moreover, the
complexity is much lower than in the supertrellis case
and the structure of the encoder does not depend on
the parameters of the hidden Markov model describ-
ing the channel.

I. INTRODUCTION

Many practical digital communications channels exhibit
statistical dependencies among errors. The error pattern of
the discrete channel (modulator-real channel-demodulator)
can be modeled using binary Markov channels [1, 2]. It is
intuitive that the presence of memory in these channels leads
to increased capacity relative to memoryless channels with
the same stationary bit error probability. In practice, many
commuriications systems make use of a channel interleaver to
distribute the errors so that codes designed for a memoryless
channel can be used. While the application of interleaving
does not change the capacity of the channel, the achievable
performance of a decoder which assumes that the channel is
memoryless is far away from the real capacity of the channel.

Turbo coding for binary Markov channels has been previ-
ously described in [3]. However, the methods proposed in [3]
involve a considerable increase in complexity, since supertrel-
lises jointly describing the constituent encoders and the hid-
den Markov models have to be built. We propose a simpli-
fied decoding method, which performs slightly worse than the
method in [3] but the main advantage (besides the reduced
complexity) is that there is no need to change the turbo en-
coder structure depending on the channel parameters.

II. SIMPLIFIED TURBO DECODING FOR BINARY
MARKOV CHANNELS

The basic idea of the proposed method is to treat the trellis
describing the binary Markov channel as another constituent
decoder which exchanges extrinsic information with the other
constituent decoders in each one of the turbo decoding iter-
ations. The channel block uses as extrinsic information the
estimation of the probability of the error pattern that is pro-
vided by the constituent decoder blocks. On the other hand, it
produces a new estimation of such a probability which will be
used as extrinsic information by the constituent convolutional
decoders. This results in three different classes of extrinsic in-
formation that are interchanged among the decoding blocks.
The proposed method resembles the ones proposed in [4, 5]
for continuous hidden Markov channels and hidden Markov
sources, although, contrarily to [4], in this case it is necessary
to iterate over the hidden Markov trellis. '
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ITI. SIMULATION RESULTS

In order to assess the performance of the proposed method,
we consider two binary Markov channels with two states. For
the first channel, the transition probability from the good to
the bad state is .0486, and .0914 is the value of the transition
probability from the bad to the good state. For the second
channel these values are .006943 and .013057, respectively. In
both cases, the bit error probability in the bad state is fixed to
.5. The performance of the system is studied as a function of
the value of the bit error probability in the good state (notice
that, since all the other parameters are fixed, there is a one to
one correspondence between the bit error probability in the
good state and the stationary bit error probability, p.)

We use a rate 1/3 turbo code that includes a systematic
bit and two identical recursive 8-state convolutional encoders
with generator matrix G(D) = %%SD—S and an interleaver
with length 16384. In order to obtain good performance it is
necessary to use a channel interleaver which “separates” the
Markov channel and the turbo decoder. Each simulation con-
sisted of at least 40 million bits. For rate 1/3 codes, the bit
error probability corresponding to the capacity of a binary
symmetric channel is p = .174. Therefore, by using chan-
nel interleaving and ignoring the memory of the channel (the

" usual approach to cope with bursty channels,) it is impossi-
ble to send reliable information through any of these channels
when the stationary bit error probability is higher than .174.
However, using the proposed method, convergence for the first
channel is achieved at p = .18 —.185, which is higher than the
memoryless limit and close to the theoretical limit for this
channel (which corresponds to a value p = .2083.) For the
second channel convergence is achieved at p = .19 —.195. The
theoretical limit in this case is p = .2307.
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I. INTRODUCTION

The weight spectrum of a turbo code [1] is useful in deriving
its performance bounds. Due to the randomness and large
size of the interleaver, it is extremely difficult to obtain the
exact weight spectrum. In the past, the average weight spec-
trum, averaged over all interleavers [2], is used in deriving the
bounds.

By introducing several limiting factors, we are able to de-
rive an approximate weight spectrum for turbo codes with
fixed interleavers. The complexity of the algorithm grows only
linearly with the size of the interleaver.

II. EVALUATING THE WEIGHT SPECTRUM

A “global” turbo codeword consists of three binary vectors:
(u,r,,7,), where u represents information bits, r, and r, rep-
resent redundant bits. A subcodeword refers to either (u,r,)
or (u,7,). One limiting factor introduced is the maximum
weight, Dz, of codewords. We ignore weights greater than
Dynax because they have little impact on the bit error rate
(BER). We only consider low input-weight codewords since
these codewords dominate the lower end of the weight spec-
trum when the interleaver guarantees a minimum spreading.
A low input-weight codeword may consist one or several Ele-
mentary Low-weight Subcodewords (ELWSC). By definition,
the error path of an ELWSC deviates from the zero state only
once in a constituent code. An ELWSC, say with input weight
2, is referred to as w2ELWSC. The weight of an ELWSC is
less than Drq.. This implies the length of its error path must
be less than a limit M. We define M as the span of ELWSCs.
Special treatments are given to input weights in the “tail”
(or last L bits) of the input sequence to account for the large
number of ELWSCs with these input weights.

To evaluate the weight spectrum, we need to find possi-
ble arrangements (or error patterns) of input weights that
result in low-weight codewords. For example, the most prob-
able input-weight 4 error pattern involving bit a is shown in
Fig. 1. CC1 stands for constituent code 1 and CC2 for con-
stituent code 2. Input bit pairs {e,b:} and {c:,d;} form two
w2ELWSCs in CC1. In CC2, these input bits swap their po-
sitions and form two other w2ELWSCs. Note that subscripts
are used for b;, c;, and d; to indicate that there are more than
one set of input bits that can form such an error pattern with
bit a. The search for these bits are conducted within the
span of ELWSCs. For example, b; is searched in the range
(Ie — M, I, + M) where I, is the index of bit a in CC1.

This searching process is applied to error patterns of input-
weight up to 6.

CCi
I Interleaver Function I
S
cC2 wed.aCi Lobilldi.

Fig. 1: Input Weight 4 Error Pattern.
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Fig. 2: Union Bound Analysis and Simulation Results of Turbo
Code with Different Interleavers.

ITI. ANALYSIS OF DIFFERENT INTERLEAVERS

In Fig. 2, the legends stand for: I: Uniform Interleaver. II:
Modified Block Interleaver with the prime number set from [1].
I1I: Modified Block Interleaver with the prime number set se-
lected from our analysis. IV: Modified S-pseudorandom Inter-
leaver as described in (3] selected from our analysis. Over 100
bit errors were accumulated for each simulation point. The
union bounds plotted are calculated using the weight spec-
trum derived from our analysis which is performed on the
rate-1/3, (37,21) turbo code with interleaver size 4096. Due
to the randomness of the generating process of interleavers,
our analysis is very useful in.picking out the “best” one. Also
the analysis provides an approximation of the error floor.
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‘We consider finite-alphabet sequences which are emitted by
a stationary source with unknown statistics.

X = X3,Xz,.., X5,
X! = Xi1,X2,...,Xm; Xi€A; |JA|=4.

Assume that we are given a training vector Y_“]f, which is
governed by the same probability law that governs X, but is
drawn independently of X. In the case where Y.y = X%y,
(Sliding-window case), the independence assumption is essen-
tially replaced by the assumption the source is a finite-order

Markov source. Given Y., we need to estimate P(X1|X2;)

(in order to predict X; given X?,, or compress X; given X2,,
etc. in cases where the actual measure P(X1]|X°,) is not avail-
able to us).

In order to estimate P(X1|X%;) one constructs, for any
training-sequence Y, some empirical conditional probability
measure Q;,_l (X1/1X2,) of X1 given X°,, hoping that this

-N

empirical conditional probability measure will be "close” in
some sense to the true P(X1|X2,).

One common way for generating such an empirical measure
is to evaluate the relative frequency of appearance of each
t + 2 vector X1, in Y_”,\l,, and use it to generate an empirical

probability measure for ¢+ 2 vectors, which will be denoted by

gy-1 (X 1,) and from this measure to generate a conditional
iy »
probability measure QtY_l (X1|X2,)=gy -1 (X1|1X2;) for any ¢
-N -N

such that X°, appears in Y_”Al, at least once.

For example, let Y} = 0101100; ¢t =0, X!, = 01,X°, =
X = Xo = 0. Then, gy-1(01) = 2/6; gy-1(00) = 1/6;
ay-1(10) = 735175 = 2/3.

For X°, that do not appear in Y7, we may set
-1 (X11X%,) = Iy (X1X° &, ), where X2 is the longest

suffix of X%, that does appear in Y. (Ko is defined more
precisely below).

But is this choice of an empirical conditional probabil-
ity measure optimal for relatively short training sequences?
Our aim is to try to minimize the K-L relative entropy (di-
vergence) between the true P(X1|X%;) and Q% _, (X1]X2¢),

~N

P(X11X2,) .
namely F log m, where E(-) denotes expectation

-N
with respect to P(Y_ 5, X1,).
In this presentation we are treating this optimization prob-
lem by deriving performance bounds for a restricted class of
empirical conditional distributions(predictors).

1This work was done in part while visiting Lucent Bell Labora-
tories

2This work was supported by the Fund for the Promotion of
Research at the Technion

Assumption 1 Let us define a random wvariable Ko =
Ko(X%41;Y ") to be the largest integer i < t such that
X%, =Y} for some1<j < N—i. (Ko =0 if Xo does not
appear in Y__Al, ).

We assume that the. discussion is limited to the class of
empirical conditional probabilty distributions such that, for
KO S tz

Q;_—;{ (X1|1x2,) = Q;_—;l (X)X k)
(since for Ko <t the conditioning is on an event X2, that was
never observed in Y:Al,: only it’s suffiz XEKO was observed in
Y23
Lemma 1 Under Ass‘umption 1 and for anyt=10,1,2,3---
—'Ey_—l}l log Q;/_—;I (X1|X2t)

¢ 0
—By-1logQy—1 (X1|X o)

- y:;] IOgP(Xllngo—l) = Hy_—)b (XIIXEKO—I) .

I\

where Ey-1(-) denotes conditional expectation given the value
-N
of Y__I%,.
If Y__A‘, is drawn independently of X°,, we have:

—Elog Q;;l (X1]1X%,)
> ~Elog P(X1]X%k,-1) = H(X1]|X2 kp-1)

We call the reader’s attention to the fact that in the ”en-
tropy” expression H(X;|X? Ko-1) Ko is a r.v. Furthermore,
this ”entropy” may be evaluated only if the probabilistic char-
acterization of the source is available. However, it’s useful-
ness stems from the fact that it is demonstrated that there
indeed exist universal algorithms for generating conditional
empirical measures g}, -1 (X1|X2,) which are members in the

admissible class that i$ defined by Assumption 1, for which
—Elog g}, _1(X1]X2,) is close to H(X1]X2x,-1)-

It shoulild be pointed out that,

H(X1) > H(X1|1X2g,—1) 2 H(X11X2,_1)

thus demonstrating the non-asymptotic effect of having a
"short” training sequence.

While these imposed restrictions are apparently intuitively
satisfying, they also lead to new useful non-asymptotic bounds
on the performance of universal data compression algorithms
such as CTW, LZ and HZ [1}(where similar bounds where
drived in the minimax sense only).
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Abstract — The sequential decision problem is stud-
ied for loss functions with memory and finite action
spaces. Based on the theory of Markov decision pro-
cesses (MDP’s), off-line reference strategies are char-
acterized. An infinite horizon on-line strategy, with
corresponding normalized “regret” which is upper-
bounded by an O(n™'/3) term for an arbitrary individ-
ual sequence of observations of length n, is derived.

I. INTRODUCTION

Consider a sequence of observations z" = ziz2---z, for
which corresponding actions ™ = bibs---b, result in non-
negative instantaneous losses £(s¢,bi—1,b:,7:), 1 < t < m,
where s; is a state driven by st+1 = f(s¢,z¢) in a finite set
S, and s; is fixed. The action space B is assumed finite, and
bo € B is an initial action. While including the classical “se-
quential decision problem” [1, 2], for which the loss at time
t is independent of b;—1, this formulation also captures cases
where there is a cost for switching between actions, or a long
term effect (“memory”) for actions taken at a given time. Ex-
tensions to longer past action memories are straightforward.

In an on-line strategy, b; is a (possibly random) function of
zt~! and b*~!. For memoryless loss functions, the excess loss
accumulated by an on-line strategy over the best off-line finite-
state (FS) strategy (i.e., one in which b; = g(s:), where g is
optimized with full knowledge of ™) is termed the regret. An
on-line randomized strategy is demonstrated in [1] for |S| =1
(see [2] for S > 1), for which the normalized expected regret
vanishes at an O(1/+/n) rate, uniformly over {z"}. Here, we
present an analogous result for loss functions with memory.

II. THE REFERENCE OFF-LINE STRATEGY

For memoryless loss functions, reference FS deterministic
strategies are justified as follows: If the data are drawn from
an FS source {p(z|s),s € S} (on a discrete or continuous data
space), the expected (normalized) loss over infinite sequences
is minimized (over all strategies by = p:(x™1,b*"!)) by the
FS strategy g(s) = argmingep Epf(s,b,z). Similarly, here,
the expected loss is given by

L, = limsup % Z Z Py(s,b',b)L(s,b’,b)

n—oo t=1 s€S, b’ ,be B

where P;(s,b',b) is the joint probability (w.r.t. {p(z|s)}
and {p:}) that (s¢,bi-1,b:) = (s,b',b), and L(s,b',b) =
Ey¢(s,t/,b,z). The minimization of L, , over {4} is an av-
erage cost per stage problem for a particular MDP. Assum-
ing that {p(z|s)} yields an irreducible Markov chain, there
is [3, Vol. 2, Ch. 4] a deterministic minimizing strategy

1Work partially done while visiting at HP Labs.
2Work done while this author was with HP Labs.
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bt = p(st,be—1), independent of s; and bo. The strategy u is
obtained as a solution to a linear program. As {p(z|s)} varies,
it generates a finite set F of deterministic off-line reference
strategies. In particular, if the state transitions are determin-
istic (e.g., if |S| = 1), then the off-line strategies are described
in terms of simple cycles with minimum average weight in a
graph whose nodes are in S x B, and an edge from (s,b’) to
(f(s),b) has a weight L(s,b',b), where s transitions to f(s).

ITI. ON-LINE STRATEGY

The design of an on-line strategy is actually an instance of
learning with expert advice [4], where F is a set of § experts.
However, the instantaneous loss of a strategy that follows an
expert F € F at time t depends on b;_1, which may not agree
with F. This memory calls for an additional block-length
parameter that determines how long the advice of an expert
is followed. The discrepancy between on-line and expert losses
at the start of each block is amortized over the block. Our on-
line strategy, inspired by [4], is first presented for the horizon-
dependent case. For a fixed block length M, at t = Mk +
1, k=0,1,.--, we randomly select F according to

exp{-nLrx}
EF’ €F exp{—nﬁF’,k}
where > 0 is a given constant and Lp,x is the cumulative

loss of F through time t = Mk. The actions of F' are followed
through t= Nk+1.

Pk(Fl{[:p'k},F € .7‘-) =

22 (89)

fmax

Theorem 1 Let M = 2(#)1/3 and =
where €max denotes the mazimum loss £(s,b',b,z) over s € S,
¥,b € B, and x € A. Then, the normalized regret of the
on-line strategy is < 1.50max[(In ﬂ)/n]”s.

For infinite horizon, time is divided into exponentially grow-
ing super-segments of sizes {IV;}, in each of which the above
algorithm is used with N; replacing n in the specification of
M and 7. We show that for all n, the normalized regret is
bounded as in Theorem 1, but with a larger constant.
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Abstract — The asymptotically optimal methods of
prediction for Markov sources with unknown memory
are suggested. The methods are based on modified
twice universal scheme.

I. INTRODUCTION

The problem of prediction and the closely related problem
of adaptive coding of time series is well known in Information
Theory, Probability Theory and Statistics [1].

We consider a source with unknown statistics which gen-
erates sequences z%2... of letters from a finite alphabet
A = {ai,...,an}. We imagine that we have at our dis-
posal a computer for solving the prediction problem. As
input we consider any finite string xziz2...xz: of letters
from A and as output we receive at each time instant
t non-negative numbers p*(ailzi...zt),...,p"(@n|T1 ... 2¢)
which are estimates of the unknown conditional probabili-
ties p(a1]z1 ... 1), ..., p{anlz1 ... zt), i-e., of the probabilities
pleer = ai|z1...2¢); i = 1,...,n. The set p*(as|zr ... z);
i < n is called the prediction.

The precision of a prediction method is measured by the
divergence between p and p* and the complezity of a method is
characterized by two numbers: the average time of calculation
at each time instant in bit operations and the memory size in
bits of the program defining the method. Let us denote the
set of Markov sources of memory (or connectivity) k as My (A)
and let Mp(A) be the set of all Bernoulli sources.

In this report we consider the prediction problem for
Markov sources with unknown statistics and memory.

II. THE MAIN RESULTS

We will use two asymptotically optimal prediction meth-
ods for M;(A),i = 0,1,..., which were suggested in [2]. The
method a; is asymptotically optimal in average and §; with
probability one.

According to twice universal scheme, at each time instant
t a computer compares the average precision of all methods
Bo,B1,...,0~ on the interval ¢ = 1,2,...,T — 1 and finds
jo for which f3;, gives the best precision on the interval t =
1,2,...,T—1. Then the computer uses f3j, in order to predict
for the next moment T'. (It looks like the likelihood principle).

It is clear that the computer should calculate (N + 1) pre-
diction sets (for Bo, f1,- .., Bn) instead of one set as it does in
case of known memory of the source. So the time of calcula-
tion increases (IV + 1) times. Similarly, the memory space of
the computer should be divided into (N + 1) parts in order to
store statistics for 8o, 81,...,8n.

1This work was supported by RFBR Grant 99-01-00586.

DK-2100 Denmark
e-mail: topsoe@math.ku.dk

The new methods are based on a simplified twice univer-
sal scheme (STUS). According to STUS, a computer which
is used for the implementation of the suggested method com-
pares two methods §;, and f;, at each time instant ¢. First,
at t = 1,2,...,T the computer compares o and f1 which
are optimal for Mo(A) and M,(A) ( T is a parameter of the
method). Then the computer removes the worst method and
includes B, instead of it. After that both methods are com-
pared during the period of [T +1,...,2T], the worst of them
is removed and so on. At each time instant ¢t the computer
uses the best method §;; for prediction. (At the first inter-
val [1,...,T)] Bo is used). At the moment (N +1)T + 1 the
computer again includes (o instead of removed f;;. And so
on. It is quite obvious that.the computer will find the best
B; and will use it almost all time for prediction if T' is quite
large. On the other hand, this universal scheme is fast and
space-efficient because at every moment only two methods are
compared instead of N in the “conventional” twice universal
scheme. We designate this method as Bl and describe two
other modifications.

The B}, is effective with probability 1. We obtain the
method B2, which is simpler if the computer stops to look for
the best method 8L, after the moment (N +1)T and uses for
prediction at the moments (N +1)T +1, (N +1)T2, ... the f;
which was the best during [NT +1,...,(N + 1)T]. The new
method %, is effective in average only. (For simplification of
the method it is possible to use optimal in average «; instead
of B;;). The last modification 32,, may be used when N is
infinite or when it is known only that a source is ergodic.
The method 3%, looks like B2, but the computer includes
randomly chosen method §; from the fBo,f1,... (Recall, that
B is included instead of the worst method 3; ; at the moments
T+1,2T+1,3T +1,..).

The main property of the suggested STUS may be formu-

lated as follows: if B, is used with T'(r) = [(log %)2“ , where
r is the precision, then for every M;(A) its precision is asymp-
totically equal to the precision of the method which is optimal
for M;(A), when r goes to 0.
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Abstract — The prediction and probability assign-
ment (PPA) concept is important in lossless image
compression. We report on a new approximate tech-
nique for PPA based on local optimization.

1. INTRODUCTION

The aim in universal lossless data compression is to
achieve a performance, in terms of average redundancy,
that asymptotically fulfills Rissanen’s lower bound [1] for
universal coding. A slightly different aim is to minimize
the maximal individual redundancy for any sequence.
This approach is well studied by for example Shtarkov [2].
An important difference between these two different mea-
surements are that by studying individual sequences we
get a tool for short or limited sequences, i.e., we may get
a desired behavior from the first symbol to the last. This
difference plays an important roll in e.g. lossless image
compression where the data is, by nature, limited to the
bounds of the image.

We know that the lower bound for universal data com-
pression depends not only on the length of the sequence
but also on number of unknown parameters, K, roughly
like: p(n) ~ & logn. Thus it is the aim when construct-
ing a data compression scheme for practical applications
to find a parameterization of the source with a minimal
number of unknown parameters without loosing any in-
formation. It is well known, in the lossless image com-
pression community, that (linear) prediction is an excel-
lent tool for such reduction of the number of unknown
parameters. Much work has focused on different strate-
gies for universal prediction schemes. These prediction
schemes have often some kind of connection with uni-
versal data compression, e.g. [3]. Although the excellent
results in the area the application in lossless image com-
pression require some further investigation due to the fact
that we want to minimize the resulting codeword length
which may be a different goal compared to minimizing
the error from the prediction scheme.

In the way the data is treated in most image compres-
sion schemes with independent prediction and probability
assignment (or estimation) we cannot guarantee that it
is possible to make a probability assignment that has an
optimal behavior according to Rissanen’s bound. For this
reason the prediction and probability assignment (PPA)
concept was introduced in [4]. The aim with PPA is to
optimize the prediction and the probability assignment

OThis work was supported by TFR project 271-98-244.

Ericsson Research, Sweden

E-mail: ben.smeets@ecs.ericsson.se

together in order to control the behavior of the redun-
dancy in a desired way. This is also of major importance
since we usually use some kind of context tree model for
our data and the sequences in each node of a context tree
tends to be very small, e.g. less than 100 samples, except
for a few nodes at small depth. For sequences of limited
length it could be disastrous to use a universal source
coding scheme which only performs asymptotically cor-
rect and have an non-optimal initial behavior.

II. THE APPROXIMATE PPA ALGORITHM

From a theoretical point of view we should be able
to construct a PPA scheme with a desired behavior
by using a weighting technique. We could calculate
the weighted block probability according to: P,(-) =
[, J,a(a,0)Pg(-,a,8)dadd, where Pg(-,a,8) denotes the
block probability for the input data given the prediction
parameters a and the probability distribution parameters
6. The a()-function sets the behavior for the parameter
description costs, i.e., the redundancy for not knowing
the parameters.

For practical use it might not be feasible to calculate
or to find a closed form expression for the block proba-
bility Pg(). For this reason we use the local optimization *
method as a tool since it will be possible to approximate
the block probability. The precision in the approxima-
tion will, however, influence the performance of the re-
dundancy.

In our suggested scheme we find the next sym-
bol probability distribution according to P,(y) =
Py(xy)/ 3, Pg(xi) where the max-probability function
is determined by Pp(x) = max, maxy a(a,fd)Pg(x,a,d).
For the Gaussian probability distribution we have used
an approximate distribution function and then simplified
the max-probability function further by finding the pa-
rameter a by a least square criteria followed by finding
the parameter 6, i.e., individual maximization. Our tests
show a superior redundancy performance compared to
traditional methods.
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Abstract — In this short contribution we present some novel
results about the reliable information-rates supported by point-
to-point multiple-antenna Rayleigh-faded wireless links for
QAM coded data-transmissions. After deriving the (symmetric)
capacity of these links, we present fast-computable analytical
upper and lower bounds that are asymptotically exact both for
high and low SNR’s and give rise to reliable evaluation of the
link-capacity. The proposed bounds apply when (perfect)
Channel-State-Information (CSI) is available at the recciver
and allow us to understand clearly the ultimate performance of
the considered multiple-antenna QAM systems. Furthermore,
asymptotically exact simple upper bounds are also presented for
a tight evaluation of the corresponding outage probability when
quasi-static fading occurs and coded packet-transmission with
interleaving is used.

EXTENDED SUMMARY

The growing demand for high-thronghput wireless services
experienced in the last years motivates the design of digital
transmission systems able to-convey increasing data-rates without
substantial bandwidth-expansion. At the present, typical cellular
wireless standards support data-services at about 9-10 kb/s but,
recently, there has been interest in providing more sophisticated
services at ISDN-compatible data-rates exceeding 100 kb/s using
the cellular spectrum. Since the wireless channel is inherently band-
limited by multipath phenomena, bandwidth-efficient coding with
diversity constitutes an effective means in coping with the
deleterious effects of fading. Although wireless systems with
multiple antennas at the receiver are today quite common, several
important contributions [1,2,6] have recently pointed out that space-
diversity at the transmitter can give rise to an extraordinary
improvement in the reliable rates conveyable by wireless
bandwidth-limited links when CSI is available at the receiver and
this last also employs space-diversity (see [8] for a comprehensive
reference list on this topic). The ultimate reliable throughput
supported by point-to-point Rayleigh-faded links with multiple
transmit/receive antennas has been evaluated in [1,2] for continuous
Gaussian-shaped coding alphabets and it has been found to scale
linearly with the number of ‘the transmit/receive antennas, becoming
unbounded for large SNR’s. Motivated by these promising
information-theoretic results, several coding strategies suitable for
actual implementations have been more recently presented [3,4,5,6).

Since the coded systems presented in the contributions provide
data-transmissions and then rely on finite-size QAM-type
constellations, a natural question that is still unanswered concerns
the reliable rates effectively supported by multiple-antenna/point-to-
point wireless systems which employ finite-size data-constellations
and are peak-power limited (at this regard, we remark that in [1,2]
only the case of continuous coding alphabet with an average power-
constraint is addressed). In this contribution we attempt to give an
answer to this question. In particular, we consider a point-to-point
multiple-antenna link affected by flat Rayleigh-distributed fadings

and under the assumption of perfect CSI at the receiver we compute
the (symmetric) Shannon capacity of the coded channel for QAM
transmissions. Since the formula for the capacity resists to a closed-
form evaluation and its computation requires multiple nested
numerical integrations, we present some fast-computable upper and
lower bounds which provide reliable (and asymptotically exact)
evaluation of the capacity. In addition, the proposed bounds also
unveil the ultimate performance limits of peak-power-limited QAM
multiple-antenna faded links and point out the impact on the
capacity of some important system parameters such as, for example,
the number of transmit/receive antennas, the constellation size and
the employed (average) SNR.

Finally, since actual cellular wireless systems may be impaired by
slow-variant (i.e., quasi-static) fading that, by fact, makes
meaningless the link-capacity [7,8], in the last part of this
contribution we investigate on the outage probability of point-to-
point QAM multiple-antenna systems. Being the latter nof
analytically computable in a closed form, we present some simple
Chernoff-type upper-bounds which are asymptotically exact and can
be utilized in practice for a reliable evaluation of the actual outages.
In addition, these bounds directly stress the impact of the number of
employed antennas and the interleaving depth on the performance
of the considered QAM systems when “block-fading” phenomena
affect the transmission link between transmit/receive antennas.
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Abstract — The problem of data transmission over
an unknown channel is considered and an approach to
code design for joint channel estimation, equalization
and error correction is proposed. In contrast to most
traditional approaches, where the receiver is designed
given knowledge of the code used at the transmitter,
this paper proposes an approach where the code is
designed based on knowledge of the receiver structure
and the statistical properties of the channel.

I. SYysTEM MODEL

Consider one-shot transmission of a binary block, b € {£1}",
over a linear filter channel using binary modulation. Assume
that for each transmitted block, b, a complex vector-valued
output, y = B-h + n € C!, is measured at the receiver,
where n €'C” is zero-mean complex Gaussian noise, and B is
a matrix containing the transmitted bits; (B);; = (b) —j+1 for
j<iandi—j+1< N,and (B);; =0 otherw1se The channel
coefficients h € C7 (w1th P =L~ N +1, assuming P < N)
are drawn from a complex-valued Gaussmn distribution and
are assumed constant over the transmission of one block, b,
but are allowed to vary between blocks. Furthermore, it is
assumed that the realization of h is unknown both at the
transmitter and at the receiver. A detailed description of the
system and the assumptions made can be found in [1].

Since the P channel coefficients in h are unknown, the
receiver implements joint maximum likelihood (ML) estima-
tion of h and detection of the transmitted bits, b, that is
(h,b) = arg mingee necp ||y — Bh||?. Hence,

b=b(y)=

where C C {£1}" is the set of allowed codewords and B* is
the pseudo-inverse of B. The mapping b : C¥ — {£1}" is the
decoder of the system. The operation of this mapping includes
(implicit) channel identification. The decoder output, b, is,
however, a function of y only, and a particular received vector
is always mapped into the same b(y).

—-B +., 112
argmin[ly - BB™y]|",

II. CopE DESIGN AND PERFORMANCE

The problem of code design is that of choosing the set of code-
words, C, for a given value of |C| < 2V, such that the word
error rate (WER), Pr(b(y) # b), is minimized without ez-
plicit knowledge of the channel. Note that this implies that the
code must allow for both estimation of the channel impulse re-
sponse, as well as providing good error correcting capabilities.
That is, C is to be chosen such that it provides an optimal
combination of redundancy for channel estimation (“training
data”) and error protection. Finding the optimal set of code
words, C, is a integer optimization problem, which, in general,

1This work was partially funded by the Swedish Research Coun-
cil for Engineering Sciences, under grant 271-99-194.

is very hard to solve. Therefore, an approach based on sim-
ulated annealing [2] is used herein, where the energy of the
system is given as a function of the WER. Unfortunately, the
WER is, in general, hard to derive and therefore a technique
based on the union bound is used instead. The union bound
gives an upper bound on the WER, given knowledge of the
pairwise error probabilities. These can be calculated using a
moment generating function approach and closed form expres-
sions are available for both Rice and Rayleigh channels [1].
The proposed scheme has been used to design a rate
log, |C|/N = 1/2 code for a channel with P = 2 equally strong
Rayleigh fading paths. Three reference cases are also con-
sidered: The first scheme uses 7 pilot bits for least squares
channel estimation, Viterbi equalization and hard decoding of
a (15,11) Hamming code, resulting in an overall code rate of
11/(15 + 7) = 1/2. The second scheme is identical to scheme
one except that the equalizer is provided with genie aided
channel estimates. Finally, the third reference scheme uses
optimal ML decoding of the overall code defined by concate-
nating the 7 pilot bits and the Hamming (15,11) code [1].

10°

WER

- ©- proposed scheme, designed at 5dB | et e NN
~©- proposed scheme, designed at 10dB
O~ proposed scheme, designed at 15d8 : .
=B estimated channel, equalization, Hamming -« o rerteeie i N
—0~ known channel, equalization, Hamming
—» ML dacoding of channe! and Hammlng code

] 5 10 15
SNR

As can be seen in the figure, the proposed coding approach
significantly outperforms the other cases, clearly illustrating
the performance benefit of designing the code for joint channel
estimation and error protection. Furthermore, in [1] it is illus-
trated that the new scheme is quite insensitive to mismatch
in the design parameters compared with their true values.
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Abstract — We give the optimal 4- and 8-state trel-
lises for across-the-subchannels TCM for DMT sys-
tems.

I. INTRODUCTION

TCM can be performed for DMT systems in two ways :
coding parallely and coding across the subchannels. The de-
coding delay in the latter case is M times less than-that in
the former case, where M is the number of subchannels [1].
We refer the latter as across-the-subchannels TCM for DMT
systems.

At the receiever input, the SNR’s in different subchannels
are different due to the channel impulse response. Thus, the
minimum weighted Euclidean distance becomes the decision
criteria for ML decoding, and hence we use weighted Viterbi
decoding. Due to this weighting, the best trellis known for
single carrier systems need not be the best in our case.

II. CLASSIFICATION OF TRELLISES

We classify all the S-state trellises into v classes (where v

= log, S) as {S(f”’) 1<z < 'y}. where S*?) denotes an
S-state trellis with a node at a level connected to 2% nodes in
the next level and having 2P parallel transitions. We label the
top most node as sp and the last node as szv_;.
Definition 1 : A cyclic trellis is a trellis in which the branches
diverging from a node s, at any level connect to 2°~7 nodes
of the next level, beginning from $(,,.36-p) mod 2v and ending
at 8((n41)-26=p 1) mod 2v,» Where b is the number of input bits
per symbol.

Sy Sa 8 Sy
S, Sy S 51
S, 52 EH S

S\ Sy S, e

(a) [C) (c) )

Figure 1: Some possible 4-state trellises : (a) 4% non-cyclic
(b) 439 cyclic (c) 431 cyclic (d) 449 cyclic

Definition 2 : The Convergence length of a trellis is defined
as the minimum of all lengths of pairs of paths that diverge
from a node, excepting the parallel transitions, and converge
at another node.

! This work was partly supported by CSIR, India, through Re-
search Grants (No:25(0086)/97/EMRI-1II) and (22(0298)/99/EMR-
II) to B.S.Rajan
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The upper bound on the convergence length of a trellis is given
by [2]
Lma:: = Lle + 1
1

where b; refers to that part of the input bits which affects the
state of encoder and |z denotes the largest integer less than
or equal to z.

Theorem 1 : The convergence length of a cyclic trellis is
equal to Lz, i.€., cyclic trellises achieve the upper bound on
the convergence length.

III. OPTIMAL 4- AND 8-STATE TRELLISES

Let bmin = min;ep,pm—1){bi}, where b; is the number of input
bits in :*"* subchannel and s,w; = min,efo,m-1){8iwi}, where
s; and w; are the squared miniumum Euclidean distance of
the i*" subchannel symbol constellation and weighting factor
for that subchannel, respectively.

Theorem 2 : The best trellis for 4-state across-the-
subchannels TCM is

(a) the 4129 cyclic trellis, for bmin = 1,

(b) the 4W4:bmin=2) cyclic trellis if

min  {2siwi + Sigrwig1} > 48w

i€f0,M—1]
else the 4(&bmin=1 cyclic trellis, for bpin > 2.
Theorem 3 : The best trellis for 8-state across-the-
subchannels TCM is
(a) the 839 cyclic trellis, for bmin = 1,
(b) the 81419 cyclic trellis, for bmin = 2,
(c) the 8®ibmin=3) cyclic trellis if

min _ {2s;wi + skwk} > 8scwe
ikefo,M—1)

else the 8(4%min=2) cyclic trellis, for bmin > 3.
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Abstract — In this paper, we consider noncoherent
communication over a frequency nonselective chan-
nel. Results from coherent coding theory are used
to devise both low and high rate codes for noncoher-
ent systems. Further, one-dimensional noncoherent
codes with good Hamming distance properties can be
transformed into space-time noncoherent codes which
achieve full transmit diversity using a block transfor-
mation.

I. INTRODUCTION

Noncoherent transmission is considered over a frequency non-
selective channel. The channel gain is assumed to be un-
known but piecewise constant over a length of time called
the coherence interval (and denoted by N), which lasts sev-
eral symbol durations. In prior work [1], a noncoherent “dis-
tance” was identified as a performance measure for noncoher-
ent codes, analogous to the Euclidean distance in the coherent
case. Also, a near-optimal algorithm of linear complexity was
found for noncoherent demodulation. This work considers the
design of one-dimensional and space-time codes for noncoher-
ent channels, with a focus on adapting simple coherent codes
for the noncoherent setting.

II. ONE-DIMENSIONAL NONCOHERENT CODES

Our results so far indicate that the vast body of knowledge
regarding coherent codes can be leveraged, with appropriate
modifications, to obtain noncoherent codes. First, the low rate
case is considered. A noncoherent code S, can be obtained
from alinear binary code S containing the all ones codeword as
the set of equivalence classes of S, where an equivalence class
consists of a vector in & and its complement. In this case, the
minimum noncoherent distance of S, as formulated in [1],
can be shown to be proportional to the minimum Hamming
distance of S. Hence, the choice of a good coherent linear
binary code for S yields a good low-rate noncoherent code Spc.
In particular, the (7,4,3) Hamming code yields an optimal
set of 8 vectors of length N = 7 on a unit sphere, for the
noncoherent setting.

For the high rate case, multilevel coding can be employed to
yield good noncoherent codes. Varying degrees of protection
are provided to each bit position in the bit labeling of sym-
bols, using stronger or weaker codes. The linear complexity
algorithm for the uncoded case can be extended to the multi-
level coding case, resulting in a low-complexity demodulation
algorithm. Simulation results show that a (7,4,3) Hamming
code applied to the least significant bit of an 8-PSK alphabet
with Ungerboeck-set partitioning gives a performance 1.5 dB
better than 8-QAM.

1This work was supported by the National Science Foundation
under a CAREER award NSF NCR96-24008CAR.
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ITI. SPACE-TIME CODES

A space-time code consists of matrices of size N x N, where N,
is the number of transmitter antennac (known as space-time
codewords) where the i" column denotes the symbols trans-
mitted over antenna ¢ from time 1 to N. A common design
goal for space-time codes is to achieve full diversity, which im-
plies that the symbol error probability decays asymptotically
as 1/SNR™, where SNR denotes the signal-to-noise ratio and
it is assumed that N > N,.

In the noncoherent case, full diversity gain can be shown to
be achieved by a code, if for every pair of codewords ¢, O, the
matrix ( & © — @ ) has full column rank. In comparison,
full coherent diversity gain is achieved if © — & has full column
rank. Thus, the following remark holds.

Remark

A space-time code that achieves full diversity in the nonco-
herent case also achieves full diversity in the coherent case,
although the converse does not hold.

Space-time codes that achieve full noncoherent diversity gain
can be derived from one-dimensional noncoherent codes, as a
result of the following theorem.

Theorem

Consider a code C such that, for every codeword ¢ =
(cosery---yen—1)T inC, |ai| = 7 Vi=0,1,...,N-1,6nda
noncoherent space-time code Snc whose codewords are derived

from C as

Co Co Co
c1 €1z clzN’“l
P(c) = :
eN-2 en-22"7? en_a(zNe )N 2
N-1 Ny—1\N-1
CN-1 CN-1Z en-1(z"70)

where z = exp (]Zﬁ’i) is an N root of unity. Then, Snc
achieves full noncoherent diversity gain if and only if N, <
N/2 and the Hamming distance dg of C satisfies N, < dgy <
(N = N).

The preceding link between one-dimensional and space-time
codes enables us to exploit constructions for one-dimensional
noncoherent codes (e.g., the multilevel codes of Section II) for
the design of space-time noncoherent codes. The interested
reader is referred to [2] for details.
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Abstract —

This paper establishes new criteria for stability and
for instability of multiclass network models under a
given sequencing or routing policy. It also extend-
s previous results on the approximation of the solu-
tion to the average cost optimality equations through
an associated fluid model: It is shown that an op-
timized network possesses a fluid limit model which
is itself optimal with respect to a total cost crite-
rion. A full version of the paper is available at
http://black.csl.uiuc.edu:80/ meyn.

I. INTRODUCTION

A traditional academic approach to scheduling and rout-
ing is to construct a Markov decision process model for the
network. This involves constructing a controlled transition
operator P,(z,y), which gives the probability of moving from
state x to state y when the control decision a is applied. The
state space X where = and y live are typically taken as the
set of all possible buffer levels at the various stations in the
network.

Given an MDP model, and a one step cost function ¢: X —
R4, a solution to the average cost optimal control problem
is found by solving the resulting dynamic programming equa-
tions. The difficulty with this approach is very well known:
‘When buffers are infinite, this becomes an infinite dimensional
optimization problem. Even when considering finite buffers,
the complexity grows exponentially with the dimension of the
state space. Hence some form of aggregation is necessary -
the Markovian model is simply too detailed to be useful in
optimization.

_An elegant approach is to consider the model in heavy traf-
fic where a reflected Brownian motion model is appropriate.
The paper (2], and many others, develop these ideas for the
network scheduling or sequencing problems. One is then faced
with optimizing a controlled stochastic differential equation
(SDE) model.

This paper builds upon the results of [5, 1]. We develop
a general framework for constructing control algorithms for
multiclass queueing networks based on a fluid model. Network
sequencing and routing problems are considered as special cas-
es. The following aspects of the resulting feedback regulation
policies are developed in the paper:

(i) The policies are stabilizing, and are in fact geometrically
ergodic for a Markovian model.

1Work supported in part by NSF Grants ECS 9403742, ECS 99
72957.

(ii) Numerical examples are given. In each case it is shown
that the feedback regulation policy closely resembles the
average-cost optimal policy. :

(iii) A method is proposed for reducing variance in simula-
tion for a network controlled using a feedback regulation
policy.

The viewpoint arrived at in this paper leads to policies
which are similar to those found through a heavy traffic anal-
ysis using a Brownian motion approximation. In all of the net-
work models which have been considered to date, one could
perform designs on the fluid model, translate these policies
as described in the paper, and arrive at the same policy that
was obtained using a Brownian motion approximation. Giv-
en the greater complexity of the Brownian motion model, we
conclude that while diffusion approximations are tremendous-
ly useful for analysis, they appear to be less useful for the
puposes of control design.
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Abstract — Although of practical importance to
managing large IP networks, measurement-based net-
work monitoring using distributed monitors has not
been rigorously formulated nor investigated. This
work develops a missing data framework for dis-
tributed monitoring based on multicast, and inves-
tigates, through density estimation, how resources
needed for network monitoring scale with the size
of the network under various network (loss) condi-
tions. The results on the scalability provide insights
into feasibility of using only edge monitors, and pro-
vide design guidelines for future network management
systems.

I. MissING DATA FORMULATION

To assist network managers in monitoring large and hetero-
geneous networks in dynamic environments, network monitors
can be allocated at either the interior or the edges of a man-
aged network to monitor Quality of Service (QoS) measures
such as packet loss or delay. Even if network monitors are
deployed everywhere in the network, some of them may be
occasionally inaccessible for various reasons. Hence, a gen-
eral formulation of network monitoring should consider this
missing information aspect.

We have developed a general theoretical framework for net-
work monitoring using distributed monitors based on missing
data formulation [3], where (a set (U) of) missing variables
correspond to unobservable network nodes where monitors are
neither available nor accessible, and (a set (O) of) observable
variables correspond to nodes with functional monitors. Our
model is in the form of the complete likelihood on both observ-
able and missing variables. We consider network monitoring
in the context of multicast probing (2], where network mon-
itors measure the number of probe packets lost at the nodes
of a multicast tree. Define the state X; of node j to be a
binary random variable, where X; = 1 if node j receives a
probe packet, and X; = 0, otherwise. The resulting complete
likelihood function possesses a very simple analytical form

L
Pr(X; = 2;,%) = [[{e]"™ [(1-ay)Cy) 70 ~=r0%}, (1)

i=1

where the parameter a; = Pr(X; = 1| Xy(;; = 1) with node
f(5) being the parent of node j, z; equals to 0 or 1, L is
the depth of a multicast tree, and C; is quantity which does
not depend on «;’s. As such a model belongs to an expo-
nential parametric family, it results in a simple Expectation-
Maximization algorithm to estimate the unknown parameters,
a;’s, corresponding to unobservable nodes.
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The estimation error between the true (a]’s) and estimated
parameters (&;’s) given measurements Doy (losses measured
by monitors) can be related to the convergence rate as

.2 *_d.
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where e is an error term depending on the missing informa-
tion, [7]2 corresponds to the complete information for the j-th

unobservable node|[3], ;\j is the convergence rate of the j-th
EM equation and n is the number of probes.

Using the theory of density estimation[l], we define the
scalability of measurement-based network monitoring in terms
of how the estimation error and the convergence rate vary with
respect to the number of probes and the size of a multicast
tree under various network conditions. For a uniform mul-
ticast tree' with small packet loss (a; = 1 — o(1),Vj) and
assuming only edge monitors, the estimation error is O(%)
with M being the total number of unobservable nodes, and
the convergence rate A; = 1 — o1),Vj. This corresponds
to the best achievable scalability suggested by density esti-

mation. When packet losses are large across the multicast
tree (a; = o(1),Vj), the estimation error is O(Elr%) with

0< fB<1,and 5\]- = 0(1),V5. This corresponds to the worst
scalability with an exponentially large number of probes in the
depth of a multicast tree, and an exponentially slow conver-
gence rate. When large losses occur locally, properly allocated
distributed monitors can improve the scalability to the best
achievable.
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